精英家教网 > 高中数学 > 题目详情
19.根据函数f(x)=x2-1在区间[-2,2]上的图象和特点,指出此函数的单调区间.

分析 利用二次函数的对称轴以及开口方向,分析求解单调区间即可.

解答 解:函数f(x)=x2-1是偶函数,对称轴是y轴,开口向上,
所以函数的单调减区间为:(-∞,0],单调增区间为:[0,+∞).

点评 本题考查二次函数的性质的应用,考查基本知识的掌握程度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知α为第三象限角,且sinα=-$\frac{3}{5}$,求cosα与tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在数列{an}中,a1=3,前n项和为Sn,且an=Sn-1-2n-1(n≥2).
(1)求a2,a3及S2,S3的值;
(2)若存在常数λ,使得数列{$\frac{{S}_{n}+λ}{{2}^{n}}$}成等差数列,求出λ的值,并求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若f(f(f(x)))=27x+26,求一次函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知两点O(0,0),A(6,0),圆C以线段OA为直径.
(1)求圆C的方程;
(2)若直线1:x-y-1=0与圆C相交于M,N两点,求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F1,F2分别是双曲线Γ;$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,O为双曲线Γ的对称中心,M,N分别在双曲线Γ的两条渐近线上,∠MF2O=∠MNO=90°,若NF2∥OM,则双曲线r的渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\sqrt{2}$xD.y=±$\sqrt{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对任意的实数x,不等式(a2-1)x2+(a-1)x-1<0都成立,则实数a的取值范围是(  )
A.-$\frac{3}{5}$<a<1B.-$\frac{3}{5}$<a≤1C.-$\frac{3}{5}$≤a≤1D.-$\frac{3}{5}$≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)是定义在R上的奇函数,并且f(x+2)=$-\frac{1}{f(x)}$,当0≤x≤3时,f(x)=x,则f(-105)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是(  ) 
A.$2\sqrt{2}$B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案