精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sinxcosx-
3
sin2x.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在x∈[0,
π
2
]的值域;
(Ⅲ)能否把函数f(x)的图象进行适当的平移得到一个奇函数的图象?如果能,写出一个平移的方法;如果不能,请说明理由.
考点:三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换
专题:函数的性质及应用
分析:(Ⅰ)求解不等式2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z,即kπ-
12
≤x≤kπ+
π
12
,k∈Z,得出单调区间.
(Ⅱ)运用
π
3
≤2x+
π
3
3
-
3
2
≤sin(2x+
π
3
)≤1,得出值域.
(Ⅲ)y=sin(2(x+θ)+
π
3
)是奇函数时,2θ+
π
3
=kπ,k∈Z,即θ=
2
-
π
6
,k∈Z,取θ=-
π
6
,再向上平移即可,主要是理解y=sin2x 是奇函数.
解答: 解;函数f(x)=sinxcosx-
3
sin2x=sin(2x+
π
3
-
3
2

(Ⅰ)2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z,
即kπ-
12
≤x≤kπ+
π
12
,k∈Z,
∴函数f(x)的单调增区间[kπ-
12
,kπ+
π
12
],k∈Z,
(Ⅱ)∵x∈[0,
π
2
],
π
3
≤2x+
π
3
3

-
3
2
≤sin(2x+
π
3
)≤1,
-
3
f(x)≤1-
3
2

即在x∈[0,
π
2
]的值域[-
3
,1-
3
2
]
(Ⅲ)f(x)=sin(2x+
π
3
-
3
2

∵y=sin(2(x+θ)+
π
3
)是奇函数时,
∴2θ+
π
3
=kπ,k∈Z,
θ=
2
-
π
6
,k∈Z,
θ=-
π
6

∴f(x)向右平移
π
6
得出y=sin(2x)-
3
2

再向上平移
3
2
个单位,得出y=sin2x,
故f(x)向右平移
π
6
,再向上平移
3
2
个单位,得出y=sin2x,为奇函数.
点评:本题考查了三角函数的图象性质,运用不等式,性质求解值域,图象的平移,属于中档题,难度不大,但是考查了整个三角的综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算9
1
2
+log24
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图甲,在平面四边形PABC中,PA=AC=2,∠P=45°,∠B=90°,
∠PCB=105°,现将四边形PABC沿AC折起,使平面PAC⊥平面ABC
(如图乙),D,E分别是棱PB和PC的中点.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)求平面ADE与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,lga3+lga6+lga9=6,则a5•a7的值是(  )
A、10000B、1000
C、100D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的首项a1=1,前n项和Sn满足an=
Sn
+
Sn-1
(n≥2).
(1)求数列{an}的通项公式;
(2)若数列{
1
Sn
}
的前n项和为Tn,求证:
5
4
Tn
7
4
 (n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C为其内角,若
1
tanA
1
tanB
1
tanC
依次成等差数列,则角B的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C1:(x+4)2+y2=4与x轴相交于A,B两点,点P为圆C1上不同于点A,B的任意一点,直线PA,PB分别交y轴于S,T两点,当点P变化时,以ST为直径的圆C2是否经过圆C1内一定点,请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
3
x3-
3
2
x2
+(a+1)x+1,其中a为实数.
(1)已知函数f(x)在x=1处取得极值,求a的值;
(2)已知不等式f′(x)>x2-x-a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(cosα,sinα),
OB
=(-sin(α+
π
6
),cos(α+
π
6
)),其中O为满足|λ
OA
-
OB
|
3
|
OB
|
,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案