精英家教网 > 高中数学 > 题目详情
2.已知${(2-\sqrt{3}x)^3}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}$,则(a0+a22-(a1+a32=1.

分析 构造函数,利用赋值法,通过平方差法,化简求解即可.

解答 解:令f(x)=(2-$\sqrt{3}$x)3=a0+a1x+a2x2+a3x3
则f(1)=a0+a1+a2+a3=(2-$\sqrt{3}$)3
f(-1)=a0-a1+a2-a3=(2+$\sqrt{3}$)3
(a0+a22-(a1+a32=(a0+a1+a2+a3)(a0-a1+a2-a3)=(2-$\sqrt{3}$)3(2+$\sqrt{3}$)3=1.
故答案为:1.

点评 本题考查二项式定理的应用,考查赋值法以及平方差法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=sin(2x-$\frac{π}{4}$)-2$\sqrt{2}$sin2x的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α,β均为锐角,且sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,则tan(α-β)=(  )
A.$\frac{\sqrt{7}}{3}$B.-$\frac{\sqrt{7}}{3}$C.±$\frac{\sqrt{7}}{3}$D.-$\frac{3\sqrt{7}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别PM2.5浓度(微克/立方米)频数(天)频率
第一组(0,25]50.25
第二组(25,50]100.5
第三组(50,75]30.15
第四组(75,100)20.1
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,且椭圆上一点与两个焦点构成的三角形周长为6+4$\sqrt{2}$.
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A,B两点(A,B不是顶点),且以AB为直径的圆过椭圆的右顶点C,证明这样的直线l恒过定点,并求出该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,点M是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点,以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q两点.若△PQM是锐角三角形,则该椭圆离心率的取值范围是($\frac{\sqrt{6}-\sqrt{2}}{2}$,$\frac{\sqrt{5}-1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数(2λ2+5λ+2)+(λ2+λ-2)i为虚数,则实数λ满足(  )
A.λ=-$\frac{1}{2}$B.λ=-2或-$\frac{1}{2}$C.λ≠-2D.λ≠1且λ≠-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=${e}^{\frac{1}{x}}$,问当x→0时,f(x)是否存在极限?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设x1,x2…xn是独立的连续型随机变量,xi的分布函数为Fi(x),令:
x(1)=min(x1,x2…xn
x(n)=max(x1,x2…xn
试求随机变量x(k)的分布函数.

查看答案和解析>>

同步练习册答案