精英家教网 > 高中数学 > 题目详情
(本题满分16分)如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点.

(1)求四棱锥-的体积;
(2)求证:平面
(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.
(1) ;(2)连,连中点,因为中点,所以,又,,则.    
(3)当BN=时,平面.   

试题分析:(1)解:正中,Q为的中点故
.
长为到平面的距离.因为,所以
所以,      
(2)证明:连,连中点,因为中点,
所以,     又,,则.    
(3)当BN=时,平面
证明如下:由(1)证明知,又,则
又因为长方形中由相似三角形得,则
  又 所以,平面
点评:空间问题中的线面关系的证明主要是应用线面平行与垂直的判定定理或性质,具体问题中要是能够根据题意适当做辅助线;求简单几何体的体积问题关键是能够应用转化思想,将所求几何体的体积转化为易于求解底面积和高的几何体的体积,注意对等积法的应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为菱形,且
,的中点.

(Ⅰ)求证:平面
(Ⅱ)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面是正方形.已知.

(Ⅰ)求证:
(Ⅱ)求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(      )
A.若mα,nβ,m∥n,则α∥β
B.若n⊥α,n⊥β,m⊥β,则m⊥α
C.若m∥α,n∥β,m⊥n,则α⊥β
D.若α⊥β,n⊥β,m⊥n,则m⊥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,棱长为2的正方体中,E,F满足

(Ⅰ)求证:EF//平面AB
(Ⅱ)求证:EF

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。

(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l垂直平面a,垂足为O.在矩形ABCD中AD=1,AB=2,若点A在l上移动,点 B在平面a上移动,则O、D两点间的最大距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果对于空间任意n(n≥2)条直线总存在一个平面α,使得这n条直线与平面α所成的角均相等,那么这样的n(  )
A.最大值为3B.最大值为4 C.最大值为5D.不存在最大值

查看答案和解析>>

同步练习册答案