精英家教网 > 高中数学 > 题目详情
13.函数f(x)=$\frac{1}{x}$-log2$\frac{1+ax}{1-x}$为奇函数,则实数a=1.

分析 由题意,f(-x)=-f(x),可得-$\frac{1}{x}$-log2$\frac{1-ax}{1+x}$=-$\frac{1}{x}$+log2$\frac{1+ax}{1-x}$,即可求出a的值.

解答 解:由题意,f(-x)=-f(x),可得-$\frac{1}{x}$-log2$\frac{1-ax}{1+x}$=-$\frac{1}{x}$+log2$\frac{1+ax}{1-x}$
∴a=±1,
a=-1,函数定义域不关于原点对称,舍去.
故答案为1.

点评 本题考查奇函数的定义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.高一(1)班共有50名学生,在数学课上全班学生一起做两道数学试题,其中一道是关于集合的试题,一道是关于函数的试题,已知关于集合的试题做正确的有40人,关于函数的试题做正确的有31人,两道题都做错的有4人,则这两道题都做对的有25人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.x>1是“x>2”的(  )
A.充要条件B.必要条件
C.必要非充分条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在△ABC中,已知$\overrightarrow{AN}$=$\frac{1}{2}\overrightarrow{AC}$,P是BN上一点,若$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,则实数m的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,则目标函数z=x+3y的最小值为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如图表:

(Ⅰ)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(Ⅱ)估算该市80岁及以上长者占全市户籍人口的百分比;
(Ⅲ)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:
①80岁及以上长者每人每月发放生活补贴200元;
②80岁以下老人每人每月发放生活补贴120元;
③不能自理的老人每人每月额外发放生活补贴100元.试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点O(0,0),M(1,0),且圆C:(x-5)2+(y-4)2=r2(r>0)上至少存在一点P,使得|PO|=$\sqrt{2}$|PM|,则r的最小值是5-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足$tanθ=\frac{3}{4}$.
(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$cos\frac{2017π}{3}$等于(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案