精英家教网 > 高中数学 > 题目详情
12.设函数f(x)是定义在R上以2为周期的奇函数,当0≤x≤1时,f(x)=log2(4x+1),则f($\frac{13}{4}$)=-2.

分析 先利用函数的周期性、奇偶性,把自变量转化到所给的区间[0,1],即可求出函数值.

解答 解:∵函数f(x)最小正周期为2,∴f($\frac{13}{4}$)=f($\frac{13}{4}$-4)=f(-$\frac{3}{4}$),
又∵函数f(x)是定义在R上的奇函数,∴f(-$\frac{3}{4}$)=-f($\frac{3}{4}$),
∵当0≤x≤1时,f(x)=log2(4x+1),
∴f($\frac{3}{4}$)=log2(4×$\frac{3}{4}$+1)=log24=2,
∴f($\frac{13}{4}$)=-f($\frac{3}{4}$)=-2.
故答案为:-2.

点评 本题综合考查了函数的奇偶性、周期性及函数值,充分理解以上有关知识是解决问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.曲线y=$\frac{1}{3}{x^3}$-2在点$(-1,-\frac{7}{3})$处的切线的倾斜角为(  )
A.30°B.45°C.135°D.-45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{xn},Sn是{xn}的前n项和,且x3=5,S5+x5=34.
(Ⅰ)求{xn}的通项公式;
(Ⅱ)设an=($\frac{1}{3}$)n,Tn是{an}的前n项和,是否存在正数λ,对任意正整数n,k,不等式Tn-λxk2<λ2恒成立?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若变量x,y满足约束条件$\left\{\begin{array}{l}x-y+1≤0\\ x+2y-8≤0\\ x≥0\end{array}\right.$,则z=3x+y的最小值为(  )
A.3B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于函数$f(x)=3sin(2x+\frac{π}{6})$,有以下命题:
①x=$\frac{7π}{6}$是函数f(x)的对称轴; 
②$(-\frac{π}{12},0)$是函数f(x)的对称中心;
③在$[-\frac{π}{4},\frac{π}{12}]$上函数f(x)单调递增;
④在$[\frac{π}{6},\frac{2π}{3}]$上函数f(x)单调递减;
⑤函数f(x)是奇函数.
其中正确的命题序号是①②③④(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某工厂生产的产品A的直径均位于区间[110,118]内(单位:mm).若生产一件产品A的直径位于区间[110,112),[112,114),[114,116),[116,118]内该厂可获利分别为10,30,20,10(单位:元),现从该厂生产的产品A中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.
(1)求a的值,并估计该厂生产一件A产品的平均利润;
(2)现用分层抽样法从直径位于区间[112,116)内的产品中随机抽取一个容量为5的样
本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间[114,116)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等差数列,数列{bn}是各项为正数的等比数列,且公比q≠1,若a2=b2,a10=b10,则(  )
A.a6>b6B.a6=b6C.a6<b6D.a6>b6或a6<b6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|log2x<3},N={x|x=2n+1,n∈N},则M∩N=(  )
A.(0,8)B.{3,5,7}C.{0,1,3,5,7}D.{1,3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,求a3
(2)三件产品中含有两件正品a,b和一件次品c,每次任取一件,按以下方式连取两次,分别求恰有一件次品的概率.①取后不放回;  ②取后放回.

查看答案和解析>>

同步练习册答案