精英家教网 > 高中数学 > 题目详情

以直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线过点P,且倾斜角为,圆C以M为圆心,4为半径。

(I)求直线的参数方程和圆C的极坐标方程;

(II)试判定直线与圆C的位置关系。

 

【答案】

(I)   (II)直线与圆C相离

【解析】

试题分析:(1)直线的参数方程(上为参数)

M点的直角坐标为(0,4) 图C半径 图C方程  ,     

 代入得圆C极坐标方程 .

(2)直线的普通方程为

圆心M到的距离为

∴直线与圆C相离.

考点:直线与圆的位置关系;直线的参数方程;圆的参数方程.

点评:本题考查直线的参数方程,圆的极坐标方程,和普通方程的互化,直线与圆的位置关系,是中档题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
).若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角α=
π
6

(I)写出直线l的参数方程是
x=
3
t+1
y=t+1
(t为参数),
x=
3
t+1
y=t+1
(t为参数),

(II)设l与圆ρ=2相交与两点A、B,求点P到A、B两点的距离之积是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点P的极坐标为(
2
π
4
),直线l过点P,且倾斜角为
3
,方程
x2
36
+
y2
16
=1所对应的曲线经过伸缩变换
x′=
1
3
x
y′=
1
2
y
后的图形为曲线C.
(Ⅰ)求直线l的参数方程和曲线C的直角坐标系方程.
(Ⅱ)直线l与曲线C相交于两点A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三题中任选两题作答
(1)(2011年江苏高考)已知矩阵A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
)
,若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(-1,5),点M的极坐标为(4,
π
2
).若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心,半径为4.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系.

查看答案和解析>>

同步练习册答案