精英家教网 > 高中数学 > 题目详情

已知函数,其中.
(1)若,求曲线在点处的切线方程;
(2)求函数的极大值和极小值,若函数有三个零点,求的取值范围.

(1);(2).

解析试题分析:(1)本小题首先代入求得原函数的导数,然后求出切点坐标和切线的斜率,最后利用点斜式求得切线方程
(2)本小题首先求得原函数的导数,通过导数零点的分析得出原函数单调性,做成表格,求得函数的极大值和极小值,若要有三个零点,只需即可,解不等式即可.
试题解析:(Ⅰ)当时, ;

所以曲线在点处的切线方程为
                            6分
(Ⅱ)=.令,解得   8分
,则.当变化时,的变化情况如下表:

x

0



f’(x)
+
0
-
0
+
f(x)
递增
极大值
递减
极小值
递增
则极大值为:,极小值为:
若要
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域为区间.
(1)求函数的极大值与极小值;
(2)求函数的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若上恒成立,求m取值范围;
(2)证明:).
(注:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中
(Ⅰ)若上的减函数,求应满足的关系;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数上的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是正实数,设函数
(Ⅰ)设,求的单调区间;
(Ⅱ)若存在,使成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. 注:是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件,证明:

查看答案和解析>>

同步练习册答案