精英家教网 > 高中数学 > 题目详情
18.函数f(x)=($\frac{1}{2}$)x-x-2的零点所在的区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 由函数零点的存在性定理,结合答案直接代入计算取两端点函数值异号的即可.

解答 解:f(-1)=2+1-2=1>0,f(0)=1-0-2=-1<0,
由函数零点的存在性定理,函数f(x)=($\frac{1}{2}$)x-x-2的零点所在的区间为(-1,0)
故选,:A

点评 本题考查函数零点的判定定理的应用,属基础知识、基本运算的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆$M:\frac{x^2}{a^2}+{y^2}=1({a>1})$右顶点、上顶点分别为A、B,且圆O:x2+y2=1的圆心到直线AB的距离为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆M的方程;
(2)若直线l与圆O相切,且与椭圆M相交于P,Q两点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,a2=3,a3+a6=11
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+$\frac{1}{{2}^{{a}_{n}}}$,其中n∈N*,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在半径为30cm的半圆形铁皮上截取一块矩形材料ABCD(点A,B在直径上,点C,D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗).
(1)设BC为xcm,AB为ycm,请写出y关于x的函数关系,并写出x的取值范围;
(2)若要求圆柱体罐子的体积最大,应如何截取?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线3x-2y=0与圆(x-m)2+y2=1相交,则正整数m的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若甲、乙、丙三组人数分别为18,24,30,现用分层抽样方法从甲、乙、丙三组中共抽取12人,则在乙组中抽取的人数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的结果为(  )
A.10B.17C.24D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的周长为6
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形ABCD的一组对边过点F1和F2,求这个平行四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设m、n是两条不同的直线,α、β是两个不同的平面,则(  )
A.若m∥α,n∥α,则m∥nB.若m∥n,n⊥α,则m⊥αC.若m∥α,m∥β,则α∥βD.若m∥α,α⊥β,则m⊥β

查看答案和解析>>

同步练习册答案