精英家教网 > 高中数学 > 题目详情
3.求函数y=arcsin(sinx)的定义域、值域、判断它的奇偶性、单调性、周期性.

分析 由条件利用反正弦函数的定义和性质,求得函数y=arcsin(sinx)的定义域、值域、判断它的奇偶性、单调性、周期性.

解答 解:对于函数y=arcsin(sinx),根据-1≤sinx≤1,求得x∈R,故函数的定义域为R.
根据反正弦函数的定义可得y∈[-$\frac{π}{2}$,$\frac{π}{2}$].
再根据y=f(x)=arcsin(sinx)满足f(-x)=arcsin[sin(-x)]=arcsin[-sinx]=-arcsin(sinx)=-f(x),
故函数f(x)为奇函数.
在R上,当x增大时,函数t=sinx没有单调性,故函数y=arcsin(sinx)没有单调性.
再根据y=f(x)=arcsin(sinx)满足f(x+2π)=arcsin[sin(x+2π)]=arcsin(sinx)=f(x),
可得函数y的一个周期为2π.
由于不存在T∈(0,2π),使f(x+T)=f(x)对于定义域内的任意x都成立,故函数y的周期为2π.

点评 本题主要考查反正弦函数的定义和性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.下面说法中,正确的是④⑦
①基本性质1可用集合符号叙述为:若A∈1,B∈1,且A∈a,B∈a,则必有1∈a.
②四边形的两条对角线必交于一点.
③用平行四边形表示的平面,以平行四边形的四条边作为平面的边界线.
④梯形是平面图形.
⑤如果两个平面有三个公共点,那么这两个平面重合.
⑥两条直线可以确定一个平面.
⑦若M∈α,M∈β,α∩β=l,则M∈l.
⑧空间中,相交于同一点的三条直线在同一平面内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x3-1(x>$\frac{1}{2}$)的图象为C1,C1关于直线y=x的对称图象为C2
(1)求C2对应的函数y=g(x)的解析式及定义域M;
(2)对任意x1,x2∈M,并且x1≠x2,求证:3|g(x1)-g(x2)|<4|x1-x2|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x∈(0,1),则f(x)=$\frac{{x}^{2}-{x}^{4}}{(1+{x}^{2})^{3}}$的最大值是$\frac{\sqrt{3}}{18}$;不等式$\frac{x}{\sqrt{1+{x}^{2}}}$+$\frac{1-{x}^{2}}{1+{x}^{2}}$>0的解集为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:$\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.$(t为参数),曲线C:ρ=3.
(1)求直线l被曲线C所截得的弦长;
(2)求(1)中弦的中点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知-2≤x≤2,-2≤y≤2,点P的坐标为(x,y)
(1)求当x,y∈Z时,点P满足(x-2)2+(y-2)2≤4的概率;
(2)求当x,y∈R时,点P满足(x-2)2+(y-2)2≤4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1,若直线l1过原点,直线l2与直线l1相交于点P,丨$\overrightarrow{OP}$丨=1,且l1⊥l2,直线l2与椭圆交于A、B两点,问是否存在这样的直线l2,使$\overrightarrow{AP•}\overrightarrow{PB}$=1成立,若存在,求出直线l2的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,空间四边形ABCD中,AC、BD成60°角,且AC=4,BD=2$\sqrt{3}$,四个点E、F、G、H分别是边AB、BC、CD、DA的中点,求SEFGH

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集A=(-2,3),集合B=[2a,a+2],若A∩B=B,求a的范围.

查看答案和解析>>

同步练习册答案