精英家教网 > 高中数学 > 题目详情

【题目】下列判断错误的是______(填写序号)

①集合{y|y=}4个子集;

②若α≠β,则tanα≠tanβ

③若log2alog2b,则2a2b

④设函数fx=log2x的反函数为gx),则g2=1

⑤已知定义在R上的奇函数fx)在(-∞,0)内有1008个零点,则函数fx)的零点个数为2017

【答案】①③⑤

【解析】

化简集合可得{﹣1,1},可判断①;举α=30°,β=210°,可判断②;运用对数函数和指数函数的单调性可判断③;求得反函数计算可判断④;运用奇函数的图象特点可判断⑤.

①集合{y|y}={1,﹣1}有4个子集,故①正确;

②若α≠β,比如α=30°,β=210°,则tanα=tanβ,故②错误;

③若log2a>log2b,可得ab>0,则2a>2b,故③正确;

④设函数fx)=log2x的反函数为gx),可得gx)=2x,则g(2)=4,故④错误;

⑤已知定义在R上的奇函数fx)在(﹣∞,0)内有1008个零点,

可得fx)在(0,+∞)内有1008个零点,

则函数fx)的零点个数为2×1008+1=2017,故⑤正确.

故答案为:①③⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函数h(x)=f(x)﹣g(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若直线g(x)=ax+b是函数f(x)=lnx﹣ 图象的切线,求a+b的最小值;
(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1 , y1),B(x2 , y2),求证:x1x2>2e2 . (取e为2.8,取ln2为0.7,取 为1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x=4n+1,n∈Z}B={x|x=4n﹣3,n∈z},C={x|x=8n+1,n∈z},则A,B,C的关系是(
A.C是B的真子集、B是A的真子集
B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=B
D.A=B=C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 且Sn=3﹣ an , bn是an与an+1的等差中项,则数列{bn}的通项公式为(
A.4×3n
B.4×( n
C. ×( n1
D. ×( n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论正确的是(
A.在(1,2)上函数f(x)为增函数
B.在(3,4)上函数f(x)为减函数
C.在(1,3)上函数f(x)有极大值
D.x=3是函数f(x)在区间[1,5]上的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其指标值来衡量,其指标值越大表明质量越好,且指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的指标值,得到了下面的试验结果: A配方的频数分布表

指标值分组

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

频数

8

20

42

22

8

B配方的频数分布表

指标值分组

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

频数

4

12

42

32

10


(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y= ,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=2ln(x+m).
(1)当m=0,存在x0∈[ ,e](e为自然对数的底数),使 ,求实数a的取值范围;
(2)当a=m=1时,设H(x)=xf(x)+g(x),在H(x)的图象上是否存在不同的两点A(x1 , y1),B(x2 , y2)(x1>x2>﹣1),使得H(x1)﹣H(x2)= ?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(x+ ).求:
(1)f(﹣8);
(2)f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)

男职工

女职工

总计

每周平均上网时间不超过4个小时

每周平均上网时间超过4个小时

70

总计

300

(Ⅰ)应收集多少名女职工样本数据?

(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:.试估计该公司职工每周平均上网时间超过4小时的概率是多少?

(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”

查看答案和解析>>

同步练习册答案