精英家教网 > 高中数学 > 题目详情
(2009•潍坊二模)如图,在正三棱柱ABC-A1B1C1中各棱长均为a,F、M分别为A1C1、CC1的中点.求证:
(I)BC1∥平面AFB1
(Ⅱ)A1M⊥平面AFB1
分析:(I)利用三角形的中位线证明EF∥BC1,再利用线面平行的判定,即可得到结论;
(Ⅱ)先利用面面垂直,得到B1F⊥平面AA1C1C,从而可得B1F⊥A1M,再证明A1M⊥AF,利用线面垂直的判定可证结论.
解答:证明:(I)连接A1B交AB1于E,连接EF,
∵EF为△A1BC1的中位线,
∴EF∥BC1
又∵EF?平面AB1F,BC1 ?平面AB1F
∴BC1∥平面AB1F,
(Ⅱ)在正三棱柱中,∵B2F⊥A1C1,面A1C1B1⊥面ACC1A1
∴B1F⊥平面AA1C1C,
∵A1M?平面AA1C1C,
∴B1F⊥A1M,
在△AA1F中,tan∠AFA1=
AA1
A1F
=2,
在△A1MC1中,tan∠A1MC1=
A1C1
MC1
=2
∴∠AFA1=∠A1MC1
又∵∠A1MC1+∠MA1C1=90°,
∴∠AFA1+∠MA1C1=90°,
∴A1M⊥AF,
又∵AF∩B1F=F,
∴A1M⊥平面AFB1
点评:本题考查线面平行,考查线面垂直,考查面面垂直的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•潍坊二模)已知m,n为两条不同的直线,α,β为两个不同的平面,下列四个命题中,错误命题的个数是(  )
①α∥β,m?α,n?β,则m∥n;
②若m?α,n?α,且m∥β,n∥β,则α∥β;
③若α⊥β,m?α,则m⊥β; 
④若α⊥β,m⊥β,m?α,则m∥α.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)在△ABC中,D为边BC上的中点,AB=2,AC=1,∠BAD=30°,则AD=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)给出下列结论:
①函数y=tan
x
2
在区间(-π,π)上是增函数;
②不等式|2x-1|>3的解集是{x|x>2};
m=
2
是两直线2x+my+1=0与mx+y-1=0平行的充分不必要条件;
④函数y=x|x-2|的图象与直线y=
1
2
有三个交点.
其中正确结论的序号是
①③④
①③④
(把所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)抛物线x2+12y=0的准线方程是
y=3
y=3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)已知函数f(x)=-2sinx•cosx+2cos2x+1.
(1)设方程f(x)-1=0在(0,π)内有两个零点x1,x2,求x1+x2的值;
(2)若把函数y=f(x)的图象向左平移m(m>0)个单位使所得函数的图象关于点(0,2)对称,求m的最小值.

查看答案和解析>>

同步练习册答案