【题目】已知函数.
(I)当a=2时,求曲线在点处的切线方程;
(II)设函数,z.x.x.k讨论的单调性并判断有无极值,有极值时求出极值.
【答案】(Ⅰ);(Ⅱ)见解析。
【解析】试题分析:(Ⅰ)根据导数的几何意义,求出切线的斜率,再用点斜式写出切线方程;(Ⅱ)由,通过讨论确定的单调性,再由单调性确定极值.
试题解析:(Ⅰ)由题意,
所以,当时, , ,
所以,
因此,曲线在点处的切线方程是,
即.
(Ⅱ)因为,
所以,
,
令,
则,
所以在上单调递增,
因为,
所以,当时, ;当时, .
(1)当时, ,
当时, , , 单调递增;
当时, , , 单调递减;
当时, , , 单调递增.
所以当时取到极大值,极大值是,
当时取到极小值,极小值是.
(2)当时, ,
当时, , 单调递增;
所以在上单调递增, 无极大值也无极小值.
(3)当时, ,
当时, , , 单调递增;
当时, , , 单调递减;
当时, , , 单调递增.
所以当时取到极大值,极大值是;
当时取到极小值,极小值是.
综上所述:
当时,函数在和上单调递增,在上单调递减,函数既有极大值,又有极小值,极大值是,极小值是;
当时,函数在上单调递增,无极值;
当时,函数在和上单调递增,在上单调递减,函数既有极大值,又有极小值,极大值是,极小值是.
科目:高中数学 来源: 题型:
【题目】某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如图:
分组 | 频数 | 频率 |
[10,15) | 20 | 0.25 |
[15,20) | 50 | n |
[20,25) | m | p |
[25,30) | 4 | 0.05 |
合计 | M | N |
(1)求表中n,p的值和频率分布直方图中a的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;
(2)如果用分层抽样的方法从样本服务次数在[10,15)和[25,30)的人中共抽取6人,再从这6人中选2人,求2人服务次数都在[10,15)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=(m2﹣m﹣1)x﹣5m﹣3在(0,+∞)上是增函数,又g(x)=loga (a>1).
(1)求函数g(x)的解析式;
(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱长为a,E是棱DD1的中点
(1)求三棱锥E﹣A1B1B的体积;
(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李庄村电费收取有以下两种方案供农户选择:
方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.
方案二:不收管理费,每度0.58元.
(1)求方案一收费L(x)元与用电量x(度)间的函数关系;
(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?
(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。
(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在平面,且PA=AB=10,设点C为⊙O上异于A、B的任意一点.
(1)求证:BC⊥平面PAC;
(2)若AC=6,求三棱锥C﹣PAB的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地有10个著名景点,其中8 个为日游景点,2个为夜游景点.某旅行团要从这10个景点中选5个作为二日游的旅游地.行程安排为第一天上午、下午、晚上各一个景点,第二天上午、下午各一个景点.
(1)甲、乙两个日游景点至少选1个的不同排法有多少种?
(2)甲、乙两日游景点在同一天游玩的不同排法有多少种?
(3)甲、乙两日游景点不同时被选,共有多少种不同排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点任作一条直线与椭圆相交于,两点,试问在轴上是否存在定点,使得直线与直线关于轴对称?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com