【题目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的图象C在x=﹣ 处的切线方程是y= .
(1)若求a,b的值,并证明:当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线y= 上或在其下方;
(2)求证:当x∈(﹣∞,2]时,f(x)≥g(x).
【答案】
(1)解:g'(x)=3ax2﹣2x﹣1,
因为g(x)=ax3﹣x2﹣x+b的图象C在 处的切线方程是 ,
所以 ,即 ,解得a=1.
因为图象C过点 ,所以 ,解得 .
要证明:当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线 上或在其下方,
只要证明:当x∈(﹣∞,2]时, .
令 ,
,令 ,得 ,
验证得 ,
所以x∈(﹣∞,2], 成立,
所以当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线 上或在其下方
(2)解:只要证明:x∈(﹣∞,2], .
x∈(﹣∞,2],令 ,
,令 ,
当 时,h'(x)<0,当 时,h'(x)>0,所以 ,
所以x∈(﹣∞,2], 成立,
又由(1)得,x∈(﹣∞,2], ,
所以x∈(﹣∞,2], ,
所以x∈(﹣∞,2],f(x)≥g(x).
【解析】(1)求出函数的导数,根据 ,求出a的值,图象C过点 ,求出b的值,问题转化为证明当x∈(﹣∞,2]时, ,根据函数的单调性证明即可;(2)问题转化为证明x∈(﹣∞,2], ,构造函数g(x),根据函数的单调性证明即可.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值).
科目:高中数学 来源: 题型:
【题目】已知二次函数.
(1)函数在区间[﹣1,1]上的最小值记为,求的解析式;
(2)求(1)中的最大值;
(3)若函数在[2,4]上是单调增函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y,有,.
(1)求的值;
(2)求证:对任意x,都有f(x)>0;
(3)解不等式f(32x)>4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i | 1 | 2 | 3 | 4 | 5 | 合计 |
xi(百万元) | 1.26 | 1.44 | 1.59 | 1.71 | 1.82 | 7.82 |
wi(百万元) | 2.00 | 2.99 | 4.02 | 5.00 | 6.03 | 20.04 |
yi(百万元) | 3.20 | 4.80 | 6.50 | 7.50 | 8.00 | 30.00 |
=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi﹣ )2=0.20, (wi﹣ )2=10.14 |
其中 .
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB是⊙O的直径,直线AF交⊙O于F(不与B重合),直线EC与⊙O相切于C,交AB于E,连接AC,且∠OAC=∠CAF,求证:
(1)AF⊥EC;
(2)若AE=5,AF=2,求AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 +ρ2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①在同一坐标系中,与的图象关于轴对称;
②是奇函数;
③的图象关于成中心对称;
④的最大值为;
⑤的单调增区间:。
以上五个判断正确有____________________(写上所有正确判断的序号)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com