精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(2cos2x, ), =(1,sin2x),函数f(x)= ﹣1.
(1)当x= 时,求|a﹣b|的值;
(2)求函数f(x)的最小正周期以及单调递增区间;
(3)求方程f(x)=k,(0<k<2),在[﹣ ]内的所有实数根之和.

【答案】
(1)

解:由向量 =(2cos2x, ), =(1,sin2x),

则:a﹣b=(2cos2x﹣1, sin2x)

当x= 时,a﹣b=(2cos2 ﹣1, sin2×

=(0,

那么:|a﹣b|=


(2)

解:f(x)=ab﹣1=1×2cos2x+ sin2x

=

=1+cos2x+ sin2x﹣1

=2sin(2x+

∴最小正周期T=

由sinx的图象和性质,可知x ,(k∈Z)是增区间.

∴2x+ 是增区间,即: ,(k∈Z)

解得: ,(k∈Z)

所以,f(x)的单调增区间为: ,(k∈Z)


(3)

解:由方程f(x)=k,(0<k<2),得

的周期T=π,又

内有2个周期.

,∴方程 内有4个交点,即有4个实根.

根据图象的对称性,有

∴所有实数根之和=x1+x2+x3+x4+x5+x6=


【解析】(1)根据平面向量加减的运算法则求出a﹣b,化简,将x= 带入,求模长.(2)根据平面向量乘积的运算法则求出f(x),将其化简,结合三角函数的图象和性质即可得到答案.(3)利用三角函数的图象和性质,在[﹣ ]内求出方程f(x)=k时,x的值,即可解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】王府井百货分店今年春节期间,消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对春节前7天参加抽奖活动的人数进行统计, 表示第天参加抽奖活动的人数,得到统计表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

经过进一步统计分析,发现具有线性相关关系.

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)判断变量之间是正相关还是负相关;

(3)若该活动只持续10天,估计共有多少名顾客参加抽奖.

参与公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:若0<a<1,则不等式ax2﹣2ax+1>0在R上恒成立,命题q:a≥1是函数 在(0,+∞)上单调递增的充要条件;在命题 ①“p且q”、②“p或q”、③“非p”、④“非q”中,假命题是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的最小正周期为π,若其图象向左平移 个单位后得到的函数为奇函数,则函数f(x)的图象(
A.关于点 对称
B.关于点 对称
C.关于直线 对称
D.关于直线 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)证明:当时,

(2)若不等式对任意的正实数恒成立,求正实数的取值范围;

(3)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, 点在底面内的射影在线段上,且 的中点, 在线段上,且.

(1)当时,证明:平面平面

(2)当时,求平面与平面所成的二面角的正弦值及四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AB=3,AC边上的中线BD= =5.
(1)求AC的长;
(2)求sin(2A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣6x﹣8y﹣5t=0,直线l:x+3y+15=0.
(1)若直线l被圆C截得的弦长为 ,求实数t的值;
(2)当t=1时,由直线l上的动点P引圆C的两条切线,若切点分别为A,B,则在直线AB上是否存在一个定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在四棱锥PABCD中,平面PAD底面ABCD,其中底面ABCD为等腰梯形,ADBC

PAABBCCD=2,PD=2PAPDQPD的中点.

(Ⅰ)证明:CQ∥平面PAB

(Ⅱ)求三棱锥Q-ACD的体积。

查看答案和解析>>

同步练习册答案