精英家教网 > 高中数学 > 题目详情
(2012•江苏三模)如图,△ABC是边长为2
3
的等边三角形,P是以C为圆心,1为半径的圆上的任意一点,则
AP
BP
的取值范围是
[1,13]
[1,13]
分析:根据△ABC是边长为2
3
的等边三角形,算出
AP
BP
=6,分别将
AP
BP
分解为以
AC
BC
CP
为基向量的式子,将数量积
AP
BP
展开,化简整理得
AP
BP
=7++
CP
AC
+
BC
)最后研究
AC
+
BC
的大小与方向,可得
CP
AC
+
BC
)的最大、最小值,最终得到
AP
BP
的取值范围.
解答:解:∵|
AC
|
=|
BC
|
=2
3
,∠ACB=60°
AC
BC
=2
3
•2
3
cos60°=6
AP
=
AC
+
CP
BP
=
BC
+
CP

AP
BP
=(
AC
+
CP
)(
BC
+
CP
)=
AC
BC
+
CP
AC
+
BC
)+
CP
2
|
CP
|
=1
AP
BP
=6+
CP
AC
+
BC
)+1=7+
CP
AC
+
BC

∵△ABC是边长为2
3
的等边三角形,
∴向量
AC
+
BC
是与AB垂直且方向向上,长度为6的一个向量
由此可得,点P在圆C上运动,当
CP
AC
+
BC
共线同向时,
CP
AC
+
BC
)取最大值,且这个最大值为6
CP
AC
+
BC
共线反向时,
CP
AC
+
BC
)取最小值,且这个最小值为-6
AP
BP
的最大值为7+6=13,最小值为7-6=1.即
AP
BP
的取值范围是[1,13]
故答案为:[1,13]
点评:本题在等边三角形和单位圆中,求向量数量积的取值范围,着重考查了平面向量的加减法则和平面向量数量积的运算性质,属于中档题.也可以利用向量的坐标运算,通过三角函数的有界性解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏三模)如图,在平面直角坐标系xoy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1)求点B的轨迹方程;
(2)当D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆上的另一个动点,且满足FG⊥FE.记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1
,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn
(3)若C=0,{an}是首项为1的等差数列,设P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超过P的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)在平面直角坐标系中,不等式组
y≥0
x-2y≥0
x+y-3≤0
表示的区域为M,t≤x≤t+1表示的区域为N,若1<t<2,则M与N公共部分面积的最大值为
5
6
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)假定某人每次射击命中目标的概率均为
12
,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)已知数列{an}满足a1=2,且对任意n∈N*,恒有nan+1=2(n+1)an
(1)求数列{an}的通项公式;
(2)设区间[
an
3n
an+1
3(n+1)
]
中的整数个数为bn,求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案