精英家教网 > 高中数学 > 题目详情
已知集合A={x|(x-2)[x-(3a+1)]<0},集合B={x|
x-2a
x-(a2+1)
<0
}.
(1)a=2时,求A∩B;
(2)a
1
3
时,若A∩B=B,求实a的取值范围.
分析:(1)已知a=2,解A,B所含方程组成的不等式组即可求得A∩B;
(2)已知A∩B=B得B⊆A,a>
1
3
得3a+1>2,可求解集合A,讨论2a和a2+1的大小关系,解集合B,根据B⊆A确定a的取值范围.
解答:解:(1)a=2时,解方程组
(x-2)(x-7)<0
x-4
x-5
<0
得,4<x<5,
故A∩B={x|4<x<5}
(2)已知A∩B=B得B⊆A,
a>
1
3
时,3a+1>2,A={x|(x-2)[x-(3a+1)]<0}={x|2<x<3a+1}
讨论2a和a2+1的大小关系:
①若a2+1=2a得a=1,即1<0不成立,集合B为空集,A={x|2<x<4},满足B⊆A
②若a2+1>2a得a≠1,B={x|
x-2a
x-(a2+1)
<0
}={x|2a<x<a2+1},∵B⊆A
2a>2
a2+1<3a+1
解得1<a<3
③若a2+1<2a即(a-1)2<0,这样的a不存在
综上所述,实数a的取值范围为{a|1≤a<3}.
点评:本题考查集合的并集运算,(1)实质为解不等式组,较简单;(2)需要进行分类讨论,注意a2+1>2a时的计算要根据B⊆A得出正确的不等式组,不要混淆大小关系,分类讨论时还应注意不能遗漏,本题属于难题,易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案