精英家教网 > 高中数学 > 题目详情
9.在空间四边形ABCD中,AC⊥BD,M、N分别是AB、CD的中点,AC=4,BD=3,求:MN和BD所成的角的正切值.

分析 取BC的中点E,连结ME,NE,由已知得∠MNE是MN和BD所成的角(或所成角的补角),由此能求出MN和BD所成的角的正切值.

解答 解:取BC的中点E,连结ME,NE,
∵AC⊥BD,M、N分别是AB、CD的中点,AC=4,BD=3,
∴EM∥AC,EM=$\frac{1}{2}AC$=2,
EN∥BD,EN=$\frac{1}{2}BD$=$\frac{3}{2}$,EM⊥EN,
∴∠MNE是MN和BD所成的角(或所成角的补角),
∴tan∠MNE=$\frac{ME}{NE}$=$\frac{2}{\frac{3}{2}}$=$\frac{4}{3}$,
∴MN和BD所成的角的正切值为$\frac{4}{3}$.

点评 本题考查两条异面直线所成角的正切值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.方程lnx+2x=6的解一定位于区间(  )
A..(1,2)B.(2,3)C..(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并证明你的结论;
(3)若f(2)=2,g(n)=$\frac{f({2}^{-n})}{n}$(n∈N*),求g(n)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{bn}满足b1=1,b2=7,bn=$\frac{{b}_{n-1}^{2}-1}{{b}_{n-2}}$(n≥3).求证:9bnbn+1+1是完全平方数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的顶点A(5,1),∠B的内角平分线BN所在直线方程为x+y-5=0,AB边上的中线CM所在直线方程为2x-y-5=0.求:
(1)顶点B的坐标;
(2)直线BC方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]即为“同族函数”.请你找出下面哪些函数解析式也能够被用来构造“同族函数”,答:①③⑤(请填写序号)
①y=|x-2|;  ②y=x;  ③y=log${\;}_{\frac{1}{2}}$(1-x2);  ④y=5x;   ⑤y=$\frac{{2}^{-x}+{2}^{x}}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,在x=0处的导数不等于零的是(  )
A.y=x-exB.y=x2•exC.y=x(1-x)D.y=x3+x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{0,x=0}\\{x+2,x<0}\end{array}\right.$.
(1)求f(x+1)的解析式;
(2)解不等式;2x+f(x+1)≤5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上的偶函数,且x1,x2∈[0,+∞)时,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,若实数a满足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(1),则a的取值范围(  )
A.[1,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,2]D.(0,2]

查看答案和解析>>

同步练习册答案