精英家教网 > 高中数学 > 题目详情
(本题满分14分)如图,在长方体ABCD—A1B1C1D1中,AB= AD=2.

(1)证明:面BDD1 B1⊥面ACD1
(2)若E是BC1的中点,P是AC的中点,F是A1C1上的点, C1F=mFA1,试求m的值,使得EF∥D1P.
(1)略(2)略
证明(1):在长方体ABCD—A1B1C1D1中,AB= AD=2,故四边形ABCD是正方形,AP⊥DP,又∵D1D⊥面ABCD,AP面ABCD∴D1D⊥AP ,D1D∩DP=D∴AP⊥面BDD1B1  ∵AP面AD1C
∴面BDB1D1⊥面ACD1  ----7分
解(2):记A1C1与B1D1的交点为Q,连BQ,
∵P是AC的中点,∴D1P∥BQ,要使得EF∥D1P,则必有EF∥BQ
在△QBC1中,E是BC1的中点, F是QC1上的点,EF∥BQ
∴F是QC1的中点,即3C1F=FA1,故所求m的值是. ----14分
点评:本题考查空间想象能力、逻辑推理能力,线面平行、线面垂直、面面平行、面面垂直,属于中档题,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分,第Ⅰ小题4分,第Ⅱ小题5分,第Ⅲ小题3分)
如图,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直线与直线所成的角为60°.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,在梯形中,

平面,且
(1)求异面直线间的距离;
(2)求直线与平面所成的角;
(3)已知是线段上的动点,若二面角
大小为,求AF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,P—ABCD是正四棱锥,是正方体,其中 
(1)求证:
(2)求PA与平面所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,2AB=2BC=CC1=2,D是棱CC1的中点 (1)求证B1D⊥平面ABD;
 (2)平面AB1D与侧面BB1C1C所成锐角的大小        C1               B1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在长方体ABCD-A1B1C1D1中,A1A=AB=2,若棱AB上存在一点P,使得D1P⊥PC,则棱AD的长的取值范围是(  )
A.[1,
2
]
B.(0,
2
]
C.(0,
2
)
D.(0,1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理科)设四面体的四个面的面积分别为S1,S2,S3,S4,其中它们的最大值为S,则
S1+S2+S3+S4
S
的取值范围是(  )
A.(1,4]B.(2,4]C.(3,4]D.(3,5]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三条线段PA=PB=PC,且点P在△ABC的射影在△ABC的外面,则△ABC是(  )
A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案