精英家教网 > 高中数学 > 题目详情
17.△ABC中,角A,B,C所对的边分别为a,b,c,其面积S=a2-(b-c)2,则tan$\frac{A}{2}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

分析 由余弦定理及三角形面积公式化简已知等式可得$\frac{1}{2}$bcsinA=2bc(1-cosA),整理可得$\frac{1-cosA}{sinA}$=$\frac{1}{4}$,利用二倍角公式,同角三角函数关系式即可求值.

解答 解:∵b2+c2-a2=2bccosA,S=$\frac{1}{2}$bcsinA.
又∵△ABC的面积S=a2-(b-c)2=-(b2+c2-a2)+2bc,
∴$\frac{1}{2}$bcsinA=2bc(1-cosA),
即有$\frac{1-cosA}{sinA}$=$\frac{1}{4}$,
又$\frac{1-cosA}{sinA}$=$\frac{2si{n}^{2}\frac{A}{2}}{2sin\frac{A}{2}cos\frac{A}{2}}$=tan$\frac{A}{2}$=$\frac{1}{4}$.
故选:C.

点评 本题主要考查了余弦定理及三角形面积公式,考查了二倍角公式,同角三角函数关系式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=$\left\{\begin{array}{l}{sinx,-\frac{π}{2}≤x≤0}\\{a(x-1)+1,x>0}\end{array}\right.$在(-$\frac{π}{2}$,+∞)上单调递增,实数a的取值范围(  )
A.(0,1]B.(0,1)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的前n项和为Sn,且Sn是${a_n}^2$和an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${a_{k_n}}∈\{{a_1},{a_2},…{a_n},…\}$,且${a_{k_1}},{a_{k_2}},…,{a_{k_n}},…$成等比数列,当k1=2,k2=4时,求数列{kn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x}+3,}&{a<0}\\{(3-a)x+2a,}&{x≥0}\end{array}\right.$,对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则a的取值范围是(  )
A.(1,3)B.(1,2)C.[2,3)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=x2-2(2a-1)x+5a2-4a+2.
(1)求f(x)在区间[0,2]上的最大值;
(2)设f(x)在区间[0,2]上的最大值为g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn=($\frac{3}{2}$)n-1
(1)求数列{an}的通项公式;
(2)当bn=log${\;}_{\frac{3}{2}}$(3an+1)时,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=$\left\{{\begin{array}{l}{{x^2}+1}&{(x≤0)}\\{-2x}&{(x>0)}\end{array}}$,则使得函数值为10的x的集合为{-3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l:x+y-1=0,
(1)若直线l1过点(3,2)且l1∥l,求直线l1的方程;
(2)若直线l2过l与直线2x-y+7=0的交点,且l2⊥l,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=lgcosx+$\sqrt{25-{x}^{2}}$的定义域.

查看答案和解析>>

同步练习册答案