分析 把已知数列递推式变形,可得数列{${a}_{n}+\frac{5}{2}$}构成以$\frac{7}{2}$为首项,以3为公比的等比数列,求出等比数列的通项公式后可得数列{an}的通项公式.
解答 解:由an=3an-1+5,得
${a}_{n}+\frac{5}{2}=3({a}_{n-1}+\frac{5}{2})$,
又${a}_{1}+\frac{5}{2}=\frac{7}{2}≠0$,
∴$\frac{{a}_{n}+\frac{5}{2}}{{a}_{n-1}+\frac{5}{2}}=3(n≥2)$,
∴数列{${a}_{n}+\frac{5}{2}$}构成以$\frac{7}{2}$为首项,以3为公比的等比数列,
则${a}_{n}+\frac{5}{2}=\frac{7}{2}•{3}^{n-1}$,
∴${a}_{n}=\frac{7}{2}•{3}^{n-1}-\frac{5}{2}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列通项公式的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-1) | B. | (-∞,0) | C. | (-1,0) | D. | [-1,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com