精英家教网 > 高中数学 > 题目详情
设函数f(x)=lnx-ax+2.
(1)若a>0,求函数f(x)的单调区间和极值;
(2)若a>-e时,函数g(x)=ex-xf′(x)在[
1
2
,3]上有最大值e3,其中f′(x)的导数,求实数a的值.
考点:利用导数研究函数的单调性,利用导数研究函数的极值,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)先求出函数的导数,从而得到函数的单调区间,极值;(2)由(1)得到函数的解析式,通过讨论a的范围,结合函数的单调性,从而求出a的值.
解答: 解:(1)由f′(x)=
1-ax
x
,(x>0),
由a>0得,当x∈(0,
1
a
)时,f′(x)>0,当x∈(
1
a
,+∞)时,f′(x)<0,
∴f(x)在(0,
1
a
)递增,在(
1
a
,+∞)递减,
∴f(x)极大值=f(
1
a
)=-lna+1,没有极小值;
(2)由(1)得:g(x)=ex-xf′(x)=ex+ax-1,则g′(x)=ex+a,
①当a≥-
e
时,由
1
2
≤x≤3得g′(x)≥0,g(x)在[
1
2
,3]上递增,
此时g(x)max=g(3),令g(3)=e3+3a-1=e3,解得:a=
1
3
,符合题意;
②当-e<a<-
e
时,
由g′(x)<0得
1
2
<x<ln(-a),∴函数g(x)在[
1
2
,3]上递减,
∴g(x)≤g(
1
2
)=
e
+
1
2
a-1<
e
-
1
2
e
-1<e3,不合题意,
由g′(x)>0得ln(-a)<x≤ln3,∴g(x)在(ln(-a),3]递增,
∴在区间(ln(-a),3]上,g(x)≤g(3)=e3+3a-1<e3-3
e
-1<e3,不合题意,
综上,a的值是
1
3
点评:本题考查了函数的单调性,考查了函数的极值问题,考查了导数的应用,考查了分类讨论思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项等比数列{an}满足a3•a2n-3=4n(n>1),则log2a1+log2a3+log2a5+…+log2a2n-1=(  )
A、n2
B、(n+1)2
C、n(2n-1)
D、(n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C:y2=x和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)做两条直线与⊙M相切于A、B两点,分别交抛物线于E、F两点.
(1)当∠AHB的角平分线垂直x轴时,求直线EF的斜率;
(2)若直线AB在y轴上的截距为t,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(log
1
2
x)2-
1
2
log
1
2
x+5在[2,4]上的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知|2x-3|≤1的解集为[m,n]
①求m+n的值;
②若|x-a|<m,求证:|x|<|a|+1.
(2)已知x,y,z为正实数,且
1
x
+
1
y
+
1
z
=1
,求x+4y+9z的最小值及取得最小值时x,y,z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知常数b>0,函数f(x)=
ax
x+a
图象过(2,1)点,函数g(x)=ln(1+bx)设h(x)=g(x)-f(x)
(Ⅰ)讨论h(x)在区间(0,+∞)上的单调性.
(Ⅱ)若h(x)存在两个极值点x1,x2,求b的取值范围,使h(x1)+h(x2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线y2=2px(p>0)上点(2,a)到焦点F的距离为3,直线l:my=x+t(t≠0)交抛物线C于A,B两点,且满足OA⊥OB.圆E是以(-p,p)为圆心,p为直径的圆.
(1)求抛物线C和圆E的方程;
(2)设点M为圆E上的任意一动点,求当动点M到直线l的距离最大时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x-
1
3|x|

(1)若f(x)=2,求x的值;
(2)判断x>0时,f(x)的单调性;
(3)若3tf(t)+mf(t)≥0对于t∈[
1
2
,1]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b为实数,已知不等式组
x+y≥0
x+y≤6
2x-y≥0
y≥ax-b
表示的平面区域是一个菱形,则ab=
 

查看答案和解析>>

同步练习册答案