【题目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“”,“”,“”等模式.其中“”模式的操作又更受欢迎,即语数外三门为必考科目,然后在物理和历史中选考一门,最后从剩余的四门中选考两门.某校为了了解学生的选科情况,从高二年级的2000名学生(其中男生1100人,女生900人)中,采用分层抽样的方法从中抽取n名学生进行调查.
(1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;
(2)在(1)的情况下对抽取到的n名同学“选物理”和“选历史”进行问卷调查,得到下列2×2列联表.请将列联表补充完整,并判断是否有99%的把握认为选科目与性别有关?
选物理 | 选历史 | 合计 | |
男生 | 90 | ||
女生 | 30 | ||
合计 |
(3)在(2)的条件下,从抽取的“选历史”的学生中按性别分层抽样再抽取5名,再从这5名学生中抽取2人了解选政治、地理、化学、生物的情况,求2人至少有1名男生的概率.
参考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
【答案】(1);90人;(2)详见解析;(3).
【解析】
(1)根据题意列出方程求n,再求出女生人数;(2)根据题意填写列联表,计算的值,对照临界值得出结论;(3)利用分层抽样法和列举法,求出基本事件数,计算所求的概率值。
解:(1)由题意得,解得,则女生人数为(人).
(2)
选物理 | 选历史 | 合计 | |
男生 | 90 | 20 | 110 |
女生 | 60 | 30 | 90 |
合计 | 150 | 50 | 200 |
∴没有99%的把握认为选科与性别有关.
(3)从选历史的学生中按性别分层抽5名学生,则由(2)可知,有2名男生,3名女生,设男生编号为1,2,女生编号为3,4,5,5名学生中再选取2人,则所有等可能的结果为34,35,31,32,45,41,42,51,52,12共10种,至少1名男生的结果为31,32,41,42,51,52共7种,∴2人中至少1名男生的概率为.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(ab0)的左、右焦点分别为F1,F2,点P为椭圆C上不与左右顶点重合的动点,设I,G分别为△PF1F2的内心和重心.当直线IG的倾斜角不随着点P的运动而变化时,椭圆C的离心率为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,.
(1)求函数的单调增区间;
(2)令,且函数有三个彼此不相等的零点0,m,n,其中.
①若,求函数在处的切线方程;
②若对,恒成立,求实数t的去取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果对于函数定义域内任意的两个自变量的值,,当时,都有,且存在两个不相等的自变量值,,使得,就称为定义域上的“不严格的增函数”.下列所给的四个函数中为“不严格增函数”的是( )
A.;B.;
C.;D..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com