精英家教网 > 高中数学 > 题目详情
已知函数,若对于任一实数的值至少有一个为正数,则实数的取值范围是

A.          B.       C.          D.

B解析:(1)当m<0时,则f(x)只能保证有限的区段为正值,因此不能满足题意.

(2)当m>0时,则g(x)=mx图象在而f(x)开口向上且过(0,1)点,

∴①当对称轴x=在y轴右侧时成立,

>0,∴0<m<4.

②当Δ<0时成立,求有Δ=4(m-2)(m-8)<0,

∴2<m<8.

综上有0<m<8时成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log2x
(Ⅰ)若f(x)的反函数是函数y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)对于任意a、b、c∈[M,+∞),M>1且a≥b≥c.当a,b,c能作为一个三角形的三边长时,f(a)、f(b)、f(c)也总能作为某个三角形的三边长,试分别探究下面两个问题:
(1)当1<M<2时,是否存在a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,以f(a)、f(b)、f(c)不能作为三角形的三边长.
(2)M≥2,证明:对于任a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,f(a)、f(b)、f(c)总能作为三角形的三边长.

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(上海秋季)解析版(理) 题型:解答题

 [番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。

若实数满足,则称远离.

(1)若比1远离0,求的取值范围;

(2)对任意两个不相等的正数,证明:远离

(3)已知函数的定义域.任取等于中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).

23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.

已知椭圆的方程为,点P的坐标为(-a,b).

(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;

(2)设直线交椭圆两点,交直线于点.若,证明:的中点;

(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

 

 

 

 


 [番茄花园1]22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=log2x
(Ⅰ)若f(x)的反函数是函数y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)对于任意a、b、c∈[M,+∞),M>1且a≥b≥c.当a,b,c能作为一个三角形的三边长时,f(a)、f(b)、f(c)也总能作为某个三角形的三边长,试分别探究下面两个问题:
(1)当1<M<2时,是否存在a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,以f(a)、f(b)、f(c)不能作为三角形的三边长.
(2)M≥2,证明:对于任a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,f(a)、f(b)、f(c)总能作为三角形的三边长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=log2x
(Ⅰ)若f(x)的反函数是函数y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)对于任意a、b、c∈[M,+∞),M>1且a≥b≥c.当a,b,c能作为一个三角形的三边长时,f(a)、f(b)、f(c)也总能作为某个三角形的三边长,试分别探究下面两个问题:
(1)当1<M<2时,是否存在a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,以f(a)、f(b)、f(c)不能作为三角形的三边长.
(2)M≥2,证明:对于任a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,f(a)、f(b)、f(c)总能作为三角形的三边长.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省厦门外国语中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数f(x)=log2x
(Ⅰ)若f(x)的反函数是函数y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)对于任意a、b、c∈[M,+∞),M>1且a≥b≥c.当a,b,c能作为一个三角形的三边长时,f(a)、f(b)、f(c)也总能作为某个三角形的三边长,试分别探究下面两个问题:
(1)当1<M<2时,是否存在a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,以f(a)、f(b)、f(c)不能作为三角形的三边长.
(2)M≥2,证明:对于任a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,f(a)、f(b)、f(c)总能作为三角形的三边长.

查看答案和解析>>

同步练习册答案