精英家教网 > 高中数学 > 题目详情
18.已知圆Q过三点A(1,0),B(3,0),C(0,1),则圆Q的标准方程为(x-2)2+(y-2)2=5.

分析 由题意,设圆心坐标为(2,n),则12+n2=22+(n-1)2,求出圆心与半径,可得圆Q的标准方程.

解答 解:由题意,设圆心坐标为(2,n),
则12+n2=22+(n-1)2,∴n=2,
∴r=$\sqrt{5}$,
∴圆Q的标准方程为:(x-2)2+(y-2)2=5.
故答案为(x-2)2+(y-2)2=5.

点评 本题考查了圆的方程,考查待定系数法的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为(  )
A.7B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面区域被直线y=kx+$\frac{4}{3}$分为面积相等的两部分,则k的值是$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求值.
(1)已知$tanα=\sqrt{2}$,求1+sin2α+cos2α的值;

(2)求:$\frac{{2sin{{50}°}+sin{{80}°}(1+\sqrt{3}tan{{10}°})}}{{\sqrt{1+sin{{100}°}}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log2(2x-1)
(Ⅰ) 求函数f(x)的单调区间;
(Ⅱ) 若函数g(x)=log2(2x+1),且关于x的方程g(x)=m+f(x)在区间[1,2]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0且a≠1)在R上单调递减,则a的取值范围是(  )
A.[$\frac{3}{4}$,1)B.(0,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{3}{4}$]D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=ax3+bx2-3x 在点x=1 处取得极大值为2.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[0,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l1:3x+2y-1=0,直线l2:5x+2y+1=0,直线l3:3x-5y+6=0,直线L经过直线l1与直线l2的交点,且垂直于直线l3,求直线L的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l1:2x+3my-m+2=0和l2:mx+6y-4=0,若l1∥l2,则l1与l2之间的距离为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

同步练习册答案