精英家教网 > 高中数学 > 题目详情

(本题满分16分)已知圆过点,且与圆>0)关于直线对称,

⑴求圆的方程;

⑵过点作两条直线分别与圆相交于点,且直线和直线的倾斜角互补,

为坐标原点,判断直线是否平行,并请说明理由

 

【答案】

解:(1)依题意,可设圆的方程为,且满足方程组

                                                                                               

由此解得 

又因为点在圆上,所以

      

故圆的方程为

(2)由题意可知,直线和直线的斜率存在且互为相反数

故可设所在的直线方程为所在的直线方程为

  消去,并整理得 .①

,又已知P,则、1为方程①的两相异实数根,由根与系数的关系得 

同理,若设点B ,则可得

于是=1.

而直线的斜率也是1,且两直线不重合,因此,直线平行

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题

(本题满分16分)
已知函数,且对任意,有.
(1)求
(2)已知在区间(0,1)上为单调函数,求实的取值范围.
(3)讨论函数的零点个数?(提示)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数为实常数).

(I)当时,求函数上的最小值;

(Ⅱ)若方程在区间上有解,求实数的取值范围;

(Ⅲ)证明:

(参考数据:

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题

(本题满分16分) 已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.

 ⑴求椭圆的方程;

⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数是定义在上的偶函数,且当时,

(Ⅰ)求的值;

(Ⅱ)求函数上的解析式;

(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案