精英家教网 > 高中数学 > 题目详情
对于函数
(1)用定义证明:f(x)在R上是单调减函数;
(2)若f(x)是奇函数,求a值;
(3)在(2)的条件下,解不等式f(2t+1)+f(t-5)≤0.
【答案】分析:(1)按取点,作差,变形,判断的过程来即可.
(2)利用奇函数定义域内有0,f(0)=0来求a值;
(3)利用单调性和奇偶性把f(2t+1)+f(t-5)≤0转化为2t+1≥-t+5即可.
解答:(1)证明;设x1<x2,则f(x1)-f(x2)=-=
∵y=2x在实数集上是增函数且函数值恒大于0,故>0,>0,>0.
即f(x1)-f(x2)>0.
∴f(x)在R上是单调减函数
(2)解:由(1)的f(x)在R上是单调减函数,即函数定义域为R,
∵f(x)是奇函数,∴f(0)=0⇒a=-1.
(3)解:有(1)(2)可得f(x)在R上是单调减函数且是奇函数
∴f(2t+1)+f(t-5)≤0.转化为f(2t+1)≤-f(t-5)=f(-t+5),⇒2t+1≥-t+5⇒t≥
故所求不等式f(2t+1)+f(t-5)≤0的解集为:{t|t≥}.
点评:本题综合考查了函数的单调性和奇偶性.在用定义证明或判断一个函数在某个区间上的单调性时,基本步骤是取点,作差或作商,变形,判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

对于函数数学公式
(1)用定义证明:f(x)在R上是单调减函数;
(2)若f(x)是奇函数,求a值;
(3)在(2)的条件下,解不等式f(2t+1)+f(t-5)≤0.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年人教版高一(上)期中数学试卷(解析版) 题型:解答题

对于函数
(1)用定义证明:f(x)在R上是单调减函数;
(2)若f(x)是奇函数,求a值;
(3)在(2)的条件下,解不等式f(2t+1)+f(t-5)≤0.

查看答案和解析>>

科目:高中数学 来源:2012年山东省普通高中学业水平考试数学样卷(一)(解析版) 题型:解答题

对于函数
(1)用函数单调性的定义证明f(x)在(-∞,+∞)上是增函数;
(2)是否存在实数a使函数f(x)为奇函数?

查看答案和解析>>

科目:高中数学 来源:2009年山东省新课标高中数学学业水平考试样卷(一)(解析版) 题型:解答题

对于函数
(1)用函数单调性的定义证明f(x)在(-∞,+∞)上是增函数;
(2)是否存在实数a使函数f(x)为奇函数?

查看答案和解析>>

同步练习册答案