精英家教网 > 高中数学 > 题目详情

(09年湖北八校联考文)(13分)过轴上动点引抛物线的两条切线为切点.

    (Ⅰ)若切线的斜率分别为,求证:为定值,并求出定值.

(Ⅱ) 求证:直线恒过定点,并求出定点坐标. 

(Ⅲ)当最小时,求的值.

 解析:(Ⅰ)设过与抛物线的相切的直线的斜率是

则该切线的方程为:

都是方程的解,故……………………………………4分

(Ⅱ)设

由于,故切线的方程是:,又由于点在上,则

,同理

则直线的方程是,则直线过定点.……………………………8分

(Ⅲ)要使最小,就是使得到直线的距离最小,

到直线的距离,当且仅当时取等号.……………………………………10分

,则

.13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年湖北八校联考文)(12分)已知函数,函数的图像在点的切线方程是

    (Ⅰ)求函数的解析式:

    (Ⅱ)若函数在区间上是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北八校联考文)(12分)如图,已知正三棱柱的各棱长都为为棱上的动点.

(Ⅰ)当时,求证:.                              

(Ⅱ) 若,求二面角的大小.              

(Ⅲ) 在(Ⅱ)的条件下,求点到平面的距离.              

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北八校联考理)(13分)

如图,已知曲线与抛物线的交点分别为,曲线和抛物线在点处的切线分别为,且的斜率分别为.

(Ⅰ)当为定值时,求证为定值(与无关),并求出这个定值;

(Ⅱ)若直线轴的交点为,当取得最小值时,求曲线的方程。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北八校联考理)(12分)如图,已知正三棱柱各棱长都为为棱上的动点。

(Ⅰ)试确定的值,使得

(Ⅱ)若,求二面角的大小;

(Ⅲ)在(Ⅱ)的条件下,求点到面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北八校联考文)(12分)

已知向量).函数

的图象的一个对称中心与它相邻的一条对称轴之间的距离为,且过点.

(Ⅰ)求函数的表达式;

(Ⅱ)当时,求函数的单调区间。

查看答案和解析>>

同步练习册答案