精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,且与直线3x﹣4y+1=0相切.

(1)求圆C的方程;

(2)若直线l:y=kx+2与圆C交于M,N两点,是否存在直线l,使得(O为坐标原点)若存在,求出k的值;若不存在,请说明理由.

【答案】(1)(x﹣2)2+(y﹣3)2=1(2)不存在直线l

【解析】

(1)根据题意,分析可得,解可得a、b的值,由圆的标准方程即可得答案;

(2)假设存在满足题意的直线l,设M(x1,y1)N(x2,y2),联立直线与圆的方程,由直线与圆相交可得△=(2k+4)2﹣16(1+k2)>0,由数量积的计算公式可得=(1+k2++4=6,解可得k的值,验证是否满足△>0,即可得答案.

(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,

即圆心(a,b)在直线3x﹣2y=0上,

圆C与直线3x﹣4y+1=0相切,则C到直线l的距离d=r=1,

则有

解得(舍)

圆C的方程为(x﹣2)2+(y﹣3)2=1.

(2)假设存在直线l,使得=6,设M(x1,y1)N(x2,y2),

得(1+k2)x2﹣(2k+4)x+4=0,

△=(2k+4)2﹣16(1+k2)>0得,且

=x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4=(1+k2++4=6,

解得k=﹣1或,不满足△>0,

所以不存在直线l,使得=6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有三个不同的零点(其中),则的值为( )

A. B. C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,.

(Ⅰ)证明:

(Ⅱ)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)的图象如图所示.观察图象可知函数y=f(x)的定义域、值域分别是(  )

A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+b)(其中a,b为常数,且a>0,a≠1)的图象经过点A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函数g(x)=( 2x﹣( x﹣1,x∈[0,+∞),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)的图象关于点 成中心对称,且与点相邻的一个最低点为,则对于下列判断:

①直线是函数图象的一条对称轴;②函数为偶函数;

③函数的图象的所有交点的横坐标之和为.

其中正确的判断是__________________.(写出所有正确判断的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ln(x+m)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,若f(x)=(x+ )ex在区间(0,1)上只有一个极值点,则a的取值范围为(
A.a>0
B.a≤1
C.a>1
D.a≤0

查看答案和解析>>

同步练习册答案