精英家教网 > 高中数学 > 题目详情

【题目】为了解户籍性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农民户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )

A. 是否倾向选择生育二胎与户籍有关

B. 是否倾向选择生育二胎与性别无关

C. 倾向选择生育二胎的人员中,男性人数与女性人数相同

D. 倾向选择生育二的人员中,农村户籍人数少于城镇户籍人数

【答案】C

【解析】试题分析:从题设中所提供人数比的柱状图可以看出:倾向选择生育二胎的人数与户籍有关;是否选择生育二胎与性别无关,其中倾向选择不生育二胎的人员中,农村户籍的人数少于城镇户籍的人数.所以提供的四个选择支中ABD都是正确的,其中C是错误的,故应选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系曲线的参数方程为是参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系直线的极坐标方程为

(1)求的直角坐标方程和的普通方程

(2)相交于两点设点上异于的一点面积最大时求点的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为关于直线的对称点在直线上.

(1)求椭圆的离心率;

(2)若过焦点垂直轴的直线被椭圆截得的弦长为,斜率为的直线交椭圆于两点,问是否存在定点,使得的斜率之和为定值?若存在,求出所有满足条件的点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(其中).

(1)求函数的单调区间;

(2)当时,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆内一个定点,是圆上任意一点.线段的垂直平分线和半径相交于点.

(Ⅰ)当点在圆上运动时,点的轨迹是什么曲线?并求出其轨迹方程;

(Ⅱ)过点作直线与曲线交于两点,点关于原点的对称点为,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数有四个零点,则实数的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)五边形中,

,沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.

1)求证:平面平面

2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱台被过点的平面截去一部分后得到如图所示的几何体,其下底面四边形是边长为2的菱形,平面.

(Ⅰ)求证:平面平面

(Ⅱ)若与底面所成角的正切值为2,求二面角的余弦值.

查看答案和解析>>

同步练习册答案