(20) (本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.
(Ⅰ)见解析;(Ⅱ)2.
解析试题分析:(Ⅰ)证明:在四棱锥P-ABCD中,连结AC交BD于点O,连结OM,因为在△PAC中,M为PC的中点,O为AC的中点,所以OM为△PAC的中位线,得OM∥AP,又因为AP平面MDB,OM平面MDB,所以PA∥平面MDB. …………6分
(Ⅱ) 解:连结PO.由条件可得PO=,AC=2,
PA=PC=2,CO=AO=.
设NC∩MO=E,由题意得BP=BC=2,且∠CPN=90°.
因为M为PC的中点,所以PC⊥BM,
同理PC⊥DM,故PC⊥平面BMD.
所以直线CN在平面BMD内的射影为直线OM,
∠MEC为直线CN与平面BMD所成的角,
又因为OM∥PA,所以∠PNC=∠MEC.
在Rt△CPN中,CP=2,NP=1,所以tan∠PNC=,
故直线 CN与平面BMD所成角的正切值为2. …………14分
利用体积法相应给分
考点:本题考查线面平行的判断定理;空间线面角。
点评:熟练掌握线面平行的判定定理和性质定理以及线面角等知识点是解题的关键.利用三角形的中位线定理是证明线线平行常用的方法之一.
科目:高中数学 来源: 题型:解答题
(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。
(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出的值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,已知几何体的三视图(单位:cm).
(1)在这个几何体的直观图相应的位置标出字母;(2分)
(2)求这个几何体的表面积及体积;(6分)
(3)设异面直线、所成角为,求.(6分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com