精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N* , 总有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=(﹣1)n ,求数列{cn}的前n项和Tn

【答案】解:(Ⅰ)设{an}的公差为d,
则a10=a1+9d=19,
解得a1=1,d=2,所以an=2n﹣1,)
所以b1b2b3…bn1bn=2n+1…①
当n=1时,b1=3,
当n≥2时,b1b2b3…bn1=2n﹣1…②
①②两式相除得
因为当n=1时,b1=3适合上式,所以
(Ⅱ)由已知

则Tn=c1+c2+c3+…+cn=
当n为偶数时,
=
=
当n为奇数时,
=
=
综上:
【解析】(Ⅰ)由题意和等差数列的前n项和公式求出公差,代入等差数列的通项公式化简求出an , 再化简b1b2b3…bn1bn=an+2,可得当n≥2时b1b2b3…bn1=2n﹣1,将两个式子相除求出bn;(Ⅱ)由(1)化简cn=(﹣1)n ,再对n分奇数和偶数讨论,分别利用裂项相消法求出Tn , 最后要用分段函数的形式表示出来.
【考点精析】解答此题的关键在于理解等差数列的前n项和公式的相关知识,掌握前n项和公式:,以及对数列的前n项和的理解,了解数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若关于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8个不同的实数根,则b+c的取值范围为(
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求a的值和函数f(x)的定义域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,且a1 , a3 , a13成等比数列,若a1=1,Sn是数列{an}前n项的和,则 (n∈N+)的最小值为(
A.4
B.3
C.2 ﹣2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=﹣an﹣( n1+2(n∈N*),数列{bn}满足bn=2nan
(Ⅰ)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)设cn=log2 ,数列{ }的前n项和为Tn , 求满足Tn (n∈N*)的n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1(a>b>0)的中心在原点,焦点在x轴上,焦距为2,且与椭圆x2+ =1有相同离心率,直线l:y=kx+m与椭圆C交于不同的A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q,满足 ,(O为坐标原点),求实数λ取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n都有an是n与Sn的等差中项,bn=an+1.
(1)求证:数列{bn}是等比数列,并求出其通项bn
(2)若数列{Cn}满足Cn= 且数列{C }的前n项和为Tn , 证明Tn<2.

查看答案和解析>>

同步练习册答案