【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,已知
(Ⅰ)求sinC的值;
(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.
【答案】解:(Ⅰ)因为cos2C=1-2sin2C= ,及0<C<π
所以sinC= .
(Ⅱ)当a=2,2sinA=sinC时,由正弦定理 ,得
c=4
由cos2C=2cos2C-1= ,及0<C<π得
cosC=±
由余弦定理c2=a2+b2-2abcosC,得
b2± b-12=0
解得 b= 或2
所以 b= 或b=2
c=4
【解析】(1)由二倍角的余弦公式可知cos2C=1-2sin2C,根据角C的取值范围即可求出sinC;(2)由正弦定理可知sinA=,sinC=,从而可求出a;由二倍角的余弦公式可知cos2C=2cos2C-1,进而可求出cosC,再由余弦定理c2=a2+b2-2bccosC即可求出b.
【考点精析】解答此题的关键在于理解二倍角的余弦公式的相关知识,掌握二倍角的余弦公式:,以及对正弦定理的定义的理解,了解正弦定理:.
科目:高中数学 来源: 题型:
【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元). (Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx﹣ax,g(x)=ex﹣3ax,其中a为实数,若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,则a的取值范围是( )
A.( ,+∞)
B.[ ,+∞)
C.(1,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 是单调递增的等差数列,首项 ,前 项和为 ,数列 是等比数列,首项 ,且 .
(1)求数列 和 的通项公式;
(2)设 ,求数列 的前 项和 ;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意实数x,[x]表示不超过x的最大整数,如[3.6]=3,[﹣3.6]=﹣4,关于函数f(x)=[ ﹣[ ]],有下列命题: ①f(x)是周期函数;
②f(x)是偶函数;
③函数f(x)的值域为{0,1};
④函数g(x)=f(x)﹣cosπx在区间(0,π)内有两个不同的零点,
其中正确的命题为(把正确答案的序号填在横线上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=﹣x3+ax2+bx+c的导数f'(x)满足f'(﹣1)=0,f'(2)=9.
(1)求f(x)的单调区间;
(2)f(x)在区间[﹣2,2]上的最大值为20,求c的值.
(3)若函数f(x)的图象与x轴有三个交点,求c的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com