精英家教网 > 高中数学 > 题目详情

【题目】一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示. 是等腰梯形, 米, 的延长线上, 为锐角). 圆都相切,且其半径长为米. 是垂直于的一个立柱,则当的值设计为多少时,立柱最矮?

【答案】时,立柱最矮.

【解析】试题分析:利用题意建立直角坐标系,得到关于的函数: ,求导之后讨论函数的单调性可知时取得最值.

试题解析:

解:方法一:如图所示,以所在直线为轴,以线段

的垂直平分线为轴,建立平面直角坐标系.

因为 ,所以直线的方程为

.

设圆心,由圆与直线相切,

所以.

,则, 设 . 列表如下:

0

极小值

所以当,即时, 取最小值. 答:当时,立柱最矮.

方法二:如图所示,延长交于点,过点

.

中, . 在中, .

所以.

(以下同方法一)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若讨论的单调性;

(Ⅱ)若过点可作函数图象的两条不同切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=sin(2x+ ),下列命题: ①函数图象关于直线x=﹣ 对称;
②函数图象关于点( ,0)对称;
③函数图象可看作是把y=sin2x的图象向左平移个 单位而得到;
④函数图象可看作是把y=sin(x+ )的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变)而得到;其中正确的命题是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(I)求的解析式及单调递减区间;

(II)是否存在常数,使得对于定义域内的任意恒成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级共有学生195人,其中女生105人,男生90人.现采用按性别分层抽样的方法,从中抽取13人进行问卷调查.设其中某项问题的选择分别为“同意”、“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.

同意

不同意

合计

女学生

4

男学生

2

(Ⅰ)完成上述统计表;

(Ⅱ)根据上表的数据估计高三年级学生该项问题选择“同意”的人数;

(Ⅲ) 从被抽取的女生中随机选取2人进行访谈,求选取的2名女生中至少有一人选择“同意”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若函数是奇函数,求实数的值;

(2)若对任意的实数,函数为实常数)的图象与函数的图象总相切于一个定点.

① 求的值;

② 对上的任意实数,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 为直角梯形, ,四边形为等腰梯形, ,已知 . 

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知,在直角坐标系中,直线的参数方程为为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.

(Ⅰ)求证:

(Ⅱ)设点的极坐标为 为直线 的交点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中, ,分别过点作直线 垂直平面,且 .

(Ⅰ)求证: 平面

(Ⅱ)求二面角的平面角的正弦值.

查看答案和解析>>

同步练习册答案