精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2-(a+2)x+1(a∈Z),且函数f(x)在区间(-2,-1)内的图象与x轴恰有一个交点,则不等式f(x)>1的解集为( )
A.(-∞,-1)∪(0,+∞)
B.(-∞,0)∪(1,+∞)
C.(-1,0)
D.(0,1)
【答案】分析:由△=(a+2)2-4a=a2+4>0,知f(x)的图象与x轴有两个交点,又f(x)在区间(-2,-1)内的图象与x轴恰有一个交点,则有f(-2)f(-1)<0,解出a的范围及a∈Z可得a值,然后解不等式f(x)>1可得答案.
解答:解:因为f(x)在区间(-2,-1)内的图象与x轴恰有一个交点,
所以f(-2)f(-1)<0,即[4a+2(a+2)+1][a+(a+2)+1]<0,
所以(6a+5)(2a+3)<0,解得-<a<-
又a∈Z,所以a=-1,所以f(x)=-x2-x+1,
f(x)>1即x2+x<0,解得-1<x<0,
故选C.
点评:本题考查二次函数的性质、图象及二次不等式的解法,考查学生综合运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案