精英家教网 > 高中数学 > 题目详情
7.如图,网格上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的体积为(  )
A.12B.6C.2D.3

分析 如图所示,该几何体由上下两部分组成,上面是水平放置的一个三棱柱,底面是底边为2,高为1的三角形,三棱柱的高为2;下面是一个水平放置的四棱柱,底面是一个平行四边形,边长为2,其高为1,四棱柱的高为2.

解答 解:如图所示,该几何体由上下两部分组成,上面是水平放置的一个三棱柱,底面是底边为2,高为1的三角形,三棱柱的高为2;下面是一个水平放置的四棱柱,底面是一个平行四边形,边长为2,其高为1,四棱柱的高为2.
该几何体的体积=2×1×2+$\frac{1}{2}×1×2×2$=6.
故选:B.

点评 本题考查了三棱柱与四棱柱的三视图与体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若tanθ=2,则$\frac{sinθcosθ}{1+si{n}^{2}θ}$的值为(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{2}{9}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A,B,当$∠AOB=\frac{π}{2}$时,求k的值;
(2)若$k=\frac{1}{2},P$是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点?若过定点则求出该定点,若不存在则说明理由;
(3)若EF、GH为圆O:x2+y2=2的两条相互垂直的弦,垂足为$M({1,\frac{{\sqrt{2}}}{2}})$,求四边形EGFH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2+2x-3>0},集合B是不等式x2+mx+1>0对于x∈R恒成立的m构成的集合.
(1)求集合A与B;
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=log36,b=1+3${\;}^{-lo{g}_{3}e}$,c=($\frac{2}{3}$)-1则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}满足a1+a2=4,a7-a4=6,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知平面上动点P到A(-$\sqrt{2}$,0)、B($\sqrt{2}$,0)两点的距离之差的绝对值等于2.
(1)判断动点P的轨迹是何种圆锥曲线,并求出其轨迹方程.
(2)设点M的坐标为($\frac{3}{2}$,0),求点M到上述曲线的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列几何体各自的三视图中,只有两个视图相同的是(  )
A.①③B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一个圆锥的底面半径是母线长的一半,侧面积的数值是它的体积的数值的$\frac{1}{2}$,则该圆锥的底面半径为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

同步练习册答案