精英家教网 > 高中数学 > 题目详情

【题目】(多选题)下列说法中,正确的命题是(

A.已知随机变量服从正态分布,则

B.以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是0.3

C.已知两个变量具有线性相关关系,其回归直线方程为,若,则

D.若样本数据的方差为2,则数据的方差为16

【答案】BC

【解析】

根据正态分布性质求即可判断A;根据方程变形即可确定的值,再判断B; 根据回归直线方程过样本中心,即可判断C;根据数据变化与方差变化关系判断D.

因为随机变量服从正态分布

所以,即A错;

,从而,即B正确;

,即C正确;

因为样本数据的方差为2,所以数据的方差为,即D错误;

故选:BC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abcS为△ABC的面积,,且ABC成等差数列,则C的大小为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知曲线的极坐标方程为,曲线的参数方程为为参数,),射线分别与曲线交于极点外的三点.

1)求的值;

2)当时,两点在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共13分)已知函数 的最小正周期为

)求的值;

)求函数的单调区间及其图象的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知与函数都相切,则不等式组所确定的平面区域在内的面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数有且只有一个零点,求实数的取值范围;

2)若函数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点FM分别在线段ACBD1(不包含端点)上运动,则(

A.在点F的运动过程中,存在EF//BC1

B.在点M的运动过程中,不存在B1MAE

C.四面体EMAC的体积为定值

D.四面体FA1C1B的体积不为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征()和严重急性呼吸综合征()等较严重疾病.而今年出现在湖北武汉的新型冠状病毒()是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.

某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n)份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验n.

方式二:混合检验,将其中k)份血液样本分别取样混合在一起检验.

若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p.现取其中k)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求p关于k的函数关系式

2)若p与干扰素计量相关,其中)是不同的正实数,

满足)都有成立.

i)求证:数列等比数列;

ii)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列结论不正确的是(

A.函数在区间上单调递增

B.函数在区间上单调递减

C.函数的极大值是,极小值是

D.存在某一个实数的值,使得函数是偶函数

查看答案和解析>>

同步练习册答案