精英家教网 > 高中数学 > 题目详情
已知k∈[-2,1],则k的值使得过A(1,1)可以作两条直线与圆 x2+y2+kx-2y-
5
4
k=0相切的概率等于(  )
A、
1
3
B、
1
2
C、
2
3
D、
3
4
考点:几何概型,直线与圆的位置关系
专题:概率与统计
分析:把圆的方程化为标准方程后,根据构成圆的条件得到等号右边的式子大于0,列出关于k的不等式,求出不等式的解集,然后由过已知点总可以作圆的两条切线,得到点在圆外,故把点的坐标代入圆的方程中得到一个关系式,让其大于0列出关于k的不等式,求出不等式的解集,综上,求出两解集的并集即为实数k的取值范围.最后利用几何概型的计算公式求解即得.
解答: 解:把圆的方程化为标准方程得:(x+
1
2
k)2+(y-1)2=
1
4
k2+
5
4
k+1,
所以
1
4
k2+
5
4
+1>0,解得:k>-1或k<-4,
又点(1,1)应在已知圆的外部,
把点代入圆方程得:1+1+k-2-1.25k>0,解得:k<0,
则实数k的取值范围是(-∞,-4)∪(-1,0).
任取k∈[-2,1],
则k的值使得过A(1,1)可以作两条直线与圆x2+y2+kx-2y-1.25k=0相切的概率为P=
0-(-1)
1-(-2)
=
1
3

故选:A.
点评:此题考查了几何概型,点与圆的位置关系,二元二次方程为圆的条件及一元二次不等式的解法.理解过已知点总利用作圆的两条切线,得到把点坐标代入圆方程其值大于0是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

锐角△ABC中,角A,B,C所对的边分别为a,b,c,若C=2A,则
c
a
的取值范围是(  )
A、(
2
3
B、(1,
3
C、(
2
,2)
D、(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)=
log2x,x>0
2x,x≤0
则满足f (a)<
1
2
的a的取值范围是(  )
A、(-∞,-1)∪(0,
2
B、(-∞,-1)
C、(0,
2
D、(-∞,-1)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a≠0)满足1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的范围是(  )
A、[3,12]
B、(3,12)
C、(5,10)
D、[5,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线
x=2+t
y=1+t
(t为参数)与曲线C:ρ2-4ρcosθ+3=0交于A、B两点,则|AB|=(  )
A、1
B、
1
2
C、
2
2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求满足(
1
4
)x-3
>16的x的取值集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈(1,10),a=lgx,b=2lgx,c=lg2x,d=lg(lgx),则(  )
A、a<b<c<d
B、d<c<a<b
C、d<b<a<c
D、b<d<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AC=2
2
,BC=2,则角A的取值范围是(  )
A、(
π
6
,  
π
3
)
B、(0,  
π
6
)
C、(0,  
π
4
]
D、[
π
4
,  
π
2
)

查看答案和解析>>

同步练习册答案