精英家教网 > 高中数学 > 题目详情

【题目】某公司有男性职工64名,一次体检后,将他们的体重(单位:kg)分组为:,绘制出频率分布直方图如图,图中从左到右的前3个小组的频率之比为.

1)求这64名男职工中,体重小于60kg的人数;

2)从体重在kg范围的男职工中用分层抽样的方法选取6名,再从这6名男职工中随机选取2名,记“至少有一名男职工体重大于65kg”为事件,求事件发生的概率.

【答案】124;(2.

【解析】

1)设50~55kg这个小组对应的频率为a,依题意得到方程组,解得即可;

2)首先求出体重在60~65kg65~70kg的人数,分别记他们为,利用列举法列出所有可能结果,最后再利用古典概型的概率公式计算可得;

解:(1)设50~55kg这个小组对应的频率为a.

65~75kg对应的频率为

,解得.

50~60kg对应的频率为0.375,从而所求人数为.

2男职工体重在60~65kg65~70kg的频率之比为

6名男职工体重在60~65kg65~70kg的个数分别为42.

分别记他们为,从中随机选取2名的所有情况为

,共15个基本事件,

其中事件A包含9个基本事件,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】均为大于1的整数.证明:存在个不被整除的整数,若将它们任意分成两组,则总有一组有若干个数的和被整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数的最大值;

2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;

3)当,方程有唯一实数解,求正数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线,过抛物线焦点且与轴垂直的直线与抛物线相交于两点,且的周长为.

(1)求抛物线的方程;

(2)若直线过焦点且与抛物线相交于两点,过点分别作抛物线的切线,切线相交于点,求:的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

1)若,证明:函数必有局部对称点;

2)若函数在定义域内有局部对称点,求实数的取值范围;

3)若函数上有局部对称点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):

季度

季度编号x

销售额y(百万元)

1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;

2)求关于的线性回归方程,并预测该公司的销售额.

附:线性回归方程:其中

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示, 支持“延迟退休年龄政策”的人数与年龄的统计结果如表:

年龄(岁)

支持“延迟退休年龄政策”人数

15

5

15

28

17

(I)由以上统计数据填写下面的列联表;

年龄低于45岁的人数

年龄不低于45岁的人数

总计

支持

不支持

总计

(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】递增的等差数列的前项和为.是方程的两个实数根.

1)求数列的通项公式;

2)当为多少时,取最小值,并求其最小值;

3)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC,PB=PD=AC,EPD的中点,求证:

(1)PB∥平面ACE;

(2)平面PAC⊥平面ABCD.

查看答案和解析>>

同步练习册答案