精英家教网 > 高中数学 > 题目详情
某旅游推介活动晚会进行嘉宾现场抽奖活动,抽奖规则是:抽奖盒中装有个大小相同的小球,分别印有“多彩十艺节”和“美丽泉城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球,若抽到两个球都印有“多彩十艺节”标志即可获奖.
(I)活动开始后,一位参加者问:盒中有几个“多彩十艺节”球?主持人笑说:我只知道从盒中同时抽两球不都是“美丽泉城行”标志的概率是,求抽奖者获奖的概率;
(Ⅱ)上面条件下,现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
(I);(Ⅱ)分布列如下解析;.

试题分析:(I)本题获奖的标准是抽到两个球都印有“多彩十艺节”标志即可获奖.而所给的条件是两球不都是“美丽泉城行”标志的概率是,不都是是都是的对立面.所以假设有n个标有“美丽泉城行”则都是“美丽泉城行”的概率为.计算出n的值.10-n就是印有“多彩十艺节”球的个数.即可求出抽奖者获奖的概率.(Ⅱ)本小题是一个超几何概型独立性实验.分布列和数学期望及方差公式..本题主要是考查概率知识,由生活背景引出数学知识.数学知识学以致用.
试题解析:(I)设印有“美丽泉城行”标志的球有个,不都是“美丽泉城行”标志为事件
则都是“美丽泉城行”标志的概率是,由对立事件的概率:,
,故“多彩十艺节”标志卡共有4张
∴抽奖者获奖的概率为      6分
(Ⅱ)的分布列为

0
1
2
3
4







     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有3个,3号球有6个.
(1)从袋中任意摸出2个球,求恰好是一个2号球和一个3号球的概率;
(2)从袋中任意摸出2个球,记得到小球的编号数之和为,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市准备从7名报名者(其中男4人,女3人)中选3人到三个局任副局长.
(1)设所选3人中女副局长人数为X,求X的分布列和数学期望;
(2)若选派三个副局长依次到A、B、C三个局上任,求A局是男副局长的情况下,B局为女副局长的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:
买饭时间(分)
1
2
3
4
5
频率
0.1
0.4
0.3
0.1
0.1
从第一个学生开始买饭时计时.
(Ⅰ)估计第三个学生恰好等待4分钟开始买饭的概率;
(Ⅱ)表示至第2分钟末已买完饭的人数,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某企业招聘工作人员,设置三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加组测试,丙、丁两人各自独立参加组测试.已知甲、乙两人各自通过测试的概率均为,丙、丁两人各自通过测试的概率均为.戊参加组测试,组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,答对3题则竞聘成功.
(Ⅰ)求戊竞聘成功的概率;
(Ⅱ)求参加组测试通过的人数多于参加组测试通过的人数的概率;
(Ⅲ)记组测试通过的总人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为 (),且三位学生是否做对相互独立.记为这三位学生中做对该题的人数,其分布列为:

0
1
2
3





(Ⅰ)求至少有一位学生做对该题的概率;
(Ⅱ)求的值;
(Ⅲ)求的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙等五名大运会志愿者被随机分到ABCD四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一岗位服务的概率;
(3)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知某离散型随机变量服从的分布列如图,则随机变量的方差等于    (    )






A.            B.           C.            D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)为增强市民交通规范意识,我市面向全市征召劝导员志愿者,分布于各候车亭或十字路口处.现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示.
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,35)岁的人数;
(2)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加“规范摩的司机的交通意识”培训活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.
分组(单位:岁)
频数
频率
[20,25)
5
0.05
[25,30)

0.20
[30,35)
35

[35,40)
30
0.30
[40,45]
10
0.10
合计
100
1.00
 

查看答案和解析>>

同步练习册答案