精英家教网 > 高中数学 > 题目详情
已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
(1);(2)

试题分析:
解题思路:(1)求出圆与两坐标轴的交点,即得的值,进而求得椭圆方程;(2)联立直线与椭圆的方程,整理成关于的一元二次方程,再利用求解.
规律总结:圆锥曲线的问题一般都有这样的特点:第一小题是基本的求方程问题,一般简单的利用定义和性质即可;后面几个小题一般来说综合性较强,用到的内容较多,大多数需要整体把握问题并且一般来说计算量很大,学生遇到这种问题就很棘手,有放弃的想法,所以处理这类问题一定要有耐心.
试题解析:(1)经过点F、B,故椭圆的方程为 ;
(2)设直线L的方程为
消去
解得
                               
               


              
点F在圆E内部,
解得0<m<3
∴m的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆 的离心率为,过的左焦点的直线被圆截得的弦长为.
(1)求椭圆的方程;
(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:上;
(2)设直线l:与椭圆W:有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l:xcosθ+ysinθ=1,且0P⊥l于P,O为坐标原点,则点P的轨迹方程为(  )
A.x2+y2=1B.x2-y2=1C.x+y=1D.x-y=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点Q(1,0),且与定直线x=-1相切.
(1)求此动圆圆心P的轨迹C的方程;
(2)若过点M(4,0)的直线l与曲线C分别相交于A,B两点,若2
AM
=
MB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆A:(x+2)2+y2=36,圆A内一定点B(2,0),圆P过B点且与圆A内切,则圆心P的轨迹为(  )
A.圆B.椭圆C.直线D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线与椭圆的离心率互为倒数,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:=1(b>0),直线l:y=mx+1,若对任意的m∈R,直线l与椭圆C恒有公共点,则实数b的取值范围是(  )
A.[1,4)B.[1,+∞)
C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

同步练习册答案