【题目】已知函数在点处取得极值.
(1)求的值;
(2)若有极大值,求在上的最小值.
【答案】(1) ;(2) .
【解析】试题分析:(1) 函数在点处取得极值 ,则 , ,列方程组解出a,b的值即可;(2)对函数求导判断单调性,求出函数的极大值,由极大值可求出c的值,代回解析式,根据单调性求出函数在上的最小值.
试题解析:
(1)因f(x)=ax3+bx+c,故f′(x)=3ax2+b,
由于f(x)在点x=2处取得极值c-16,
故有,
即化简得,
解得a=1,b=-12.
(2)由(1)知f(x)=x3-12x+c;
f′(x)=3x2-12=3(x-2)(x+2).
令f′(x)=0,得x1=-2,x2=2.
当x∈(-∞,-2)时,f′(x)>0,故f(x)在(-∞,-2)上为增函数;
当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,
故f(x)在(2,+∞)上为增函数.
由此可知f(x)在x1=-2处取得极大值f(-2)=16+c,f(x)在x1=2处取得极小值f(2)=c-16.
由题设条件知16+c=28得c=12.
此时f(-3)=9+c=21,f(3)=-9+c=3,
f(2)=-16+c=-4,
因此f(x)在[-3,3]上的最小值为f(2)=-4.
点睛: 函数的导数与极值点的关系:(1)定义域上的可导函数在处取得极值的充要条件是,并且在两侧异号,若左负右正为极小值点,若左正右负为极大值点;(2)函数在点处取得极值时,它在这点的导数不一定存在,例如函数,结合图象,知它在处有极小值,但它在处的导数不存在;(3) 既不是函数在处取得极值的充分条件也不是必要条件.最后一定要注意对极值点进行检验.
科目:高中数学 来源: 题型:
【题目】已知中,角,,所对的边分别是,,,且点,,动点满足(为常数且),动点的轨迹为曲线.
(Ⅰ)试求曲线的方程;
(Ⅱ)当时,过定点的直线与曲线交于,两点,是曲线上不同于,的动点,试求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图所示.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间;
(3)当x∈[﹣ , ]时,求函数y=f(x+ )﹣ f(x+ )的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的短轴长为,右焦点为,点是椭圆上异于左、右顶点的一点.
(1)求椭圆的方程;
(2)若直线与直线交于点,线段的中点为,证明:点关于直线的对称点在直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N* .
(1)证明数列{an﹣n}是等比数列;
(2)求数列{an}的前n项和Sn;
(3)证明不等式Sn+1≤4Sn , 对任意n∈N*皆成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中
.且点为线段的中点, , 现将△沿进行翻折,使得二面角
的大小为,得到图形如图(2)所示,连接,点分别在线段上.
(1)证明: ;
(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】完成下列进位制之间的转化.
(1)10231(4)=________(10);
(2)235(7)=________(10);
(3)137(10)=________(6);
(4)1231(5)=________(7);
(5)213(4)=________(3);
(6)1010111(2)=________(4).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com