精英家教网 > 高中数学 > 题目详情

【题目】已知函数在点处取得极值.

(1)求的值;

(2)若有极大值,求上的最小值.

【答案】(1) ;(2) .

【解析】试题分析:(1) 函数在点处取得极值 ,则 , ,列方程组解出a,b的值即可;(2)对函数求导判断单调性,求出函数的极大值,由极大值可求出c的值,代回解析式,根据单调性求出函数上的最小值.

试题解析:

(1)f(x)=ax3bxc,故f′(x)=3ax2b

由于f(x)在点x=2处取得极值c-16,

故有,

化简得,

解得a=1,b=-12.

(2)(1)f(x)=x3-12xc

f′(x)=3x2-12=3(x-2)(x+2).

f′(x)=0,得x1=-2,x2=2.

x∈(-∞,-2)时,f′(x)>0,故f(x)(-∞,-2)上为增函数;

x∈(-2,2)时,f′(x)<0,故f(x)(-2,2)上为减函数;

x∈(2,+∞)时,f′(x)>0,

f(x)(2,+∞)上为增函数.

由此可知f(x)x1=-2处取得极大值f(-2)=16+cf(x)x1=2处取得极小值f(2)=c-16.

由题设条件知16+c=28c=12.

此时f(-3)=9+c=21,f(3)=-9+c=3,

f(2)=-16+c=-4,

因此f(x)[-3,3]上的最小值为f(2)=-4.

点睛: 函数的导数与极值点的关系:(1)定义域上的可导函数处取得极值的充要条件是,并且两侧异号,若左负右正为极小值点,若左正右负为极大值点;(2)函数在点处取得极值时,它在这点的导数不一定存在,例如函数,结合图象,知它在处有极小值,但它在处的导数不存在;(3) 既不是函数处取得极值的充分条件也不是必要条件.最后一定要注意对极值点进行检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别是,且点,动点满足为常数且),动点的轨迹为曲线.

(Ⅰ)试求曲线的方程;

(Ⅱ)当时,过定点的直线与曲线交于两点,是曲线上不同于的动点,试求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图所示.

(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间;
(3)当x∈[﹣ ]时,求函数y=f(x+ )﹣ f(x+ )的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M(xy)到直线lx=4的距离是它到点N(1,0)的距离的2倍.

(1)求动点M的轨迹C的方程;

(2)过点P(0,3)的直线m与轨迹C交于AB两点,若APB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为,右焦点为,点是椭圆上异于左、右顶点的一点.

(1)求椭圆的方程;

(2)若直线与直线交于点,线段的中点为,证明:点关于直线的对称点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)证明数列{an﹣n}是等比数列;
(2)求数列{an}的前n项和Sn
(3)证明不等式Sn+1≤4Sn , 对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(Ⅰ)若是单调递增函数,求实数的取值范围;

(Ⅱ)令,若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】完成下列进位制之间的转化.

(1)10231(4)________(10)

(2)235(7)________(10)

(3)137(10)________(6)

(4)1231(5)________(7)

(5)213(4)________(3)

(6)1010111(2)________(4)

查看答案和解析>>

同步练习册答案