精英家教网 > 高中数学 > 题目详情
15.如图,点P(3,4)为圆x2+y2=25的一点,点E,F为y轴上的两点,△PEF是以点P为顶点的等腰三角形,直线PE,PF交圆于D,C两点,直线CD交y轴于点A,则cos∠DAO的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{3}{4}$

分析 要求cos∠DAO的值,由于A为一动点,故无法直接解三角形求出答案,我们可以构造与∠DAO相等的角,然后进行求解,过P点作x轴平行线,交圆弧于G,连接OG根据等腰三角形性质及垂径定理,结合同角或等角的余角相等,我们可以判断∠DAO=∠PGO,进而得到结论.

解答 解:过P点作x轴平行线,交圆弧于G,连接OG.
则:G点坐标为(-3,4),PG⊥EF,
∵PEF是以P为顶点的等腰三角形,
∴PG就是角DPC的平分线,
∴G就是圆弧CD的中点.
∴OG⊥CD,
∴∠DAO+∠GOA=90°.
而∠PGO+∠GOA=90°.
∴∠DAO=∠PGO
∴cos∠DAO=cos∠PGO=$\frac{3}{5}$.
故选B.

点评 本题考查的知识点是三角函数求值,其中利用等腰三角形性质及垂径定理,结合同角或等角的余角相等,构造与∠DAO相等的角∠PGO,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.有下列命题:①双曲线$\frac{x^2}{25}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{35}+{y^2}=1$有相同的焦点;
②“-$\frac{1}{2}$<x<0”是“2x2-5x-3<0”必要不充分条件;
③若$\overrightarrow a$、$\overrightarrow b$共线,则$\overrightarrow a$、$\overrightarrow b$所在的直线平行;
④等轴双曲线的离心率是$\sqrt{2}$;
⑤?x∈R,x2-3x+3≠0.
其中是真命题的有:①④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R),A=[-1,1],设关于x的方程f(x)=$\frac{1}{x}$的两根为x1,x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知角α的终边经过P($\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα;
(2)根据上述条件,你能否确定sin($\frac{π}{4}$+α)的值?若能,求出sin($\frac{π}{4}$+α)的值,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称ABCDE
销售额( x)/千万元35679
利润额( y)/千万元23345
(1)求利润额y与销售额x之间的线性回归方程$\hat y=\hat bx+\hat a$;
(2)若该公司某月的总销售额为40千万元,则它的利润额估计是多少?
参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知关于x的方程($\frac{1}{2}$)x=$\frac{1}{1-a}$有一个正根,则实数a的取值范围是a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a<0”是“函数f(x)=|x(ax+1)|在区间(-∞,0)内单调递减”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,圆柱OO1的底面圆半径为2,ABCD为经过圆柱轴OO1的截面,点P在$\widehat{{A}{B}}$上且$\widehat{{A}{P}}=\frac{1}{3}\widehat{{A}{P}{B}}$,Q为PD上任意一点.
(Ⅰ)求证:AQ⊥PB;
(Ⅱ)若线段PD的长为$2\sqrt{3}$,求圆柱OO1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=ax3+x+c在[a,b]上是奇函数,则a+b+c+2的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案