精英家教网 > 高中数学 > 题目详情

已知动圆过定点,且与定直线相切.

(1)求动圆圆心的轨迹C的方程;

(2)若是轨迹C上的两不同动点,且. 分别以为切点作轨迹C的切线,设其交点Q,证明为定值.

(1);(2)0


解析:

解:(1)依题意,圆心的轨迹是以为焦点,为准线的抛物线上

  因为抛物线焦点到准线距离等于4  所以圆心的轨迹是

(2)由已知,设,由,[来源:学科网ZXXK]

即得,故    

 将(1)式两边平方并把    (3)

解(2)、(3)式得,且有

抛物线方程为 所以过抛物线上A、B两点的切线方程分别是 

        

      

所以为定值,其值为0. 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年山东卷理)(14分)

已知动圆过定点,且与直线相切,其中.

(I)求动圆圆心的轨迹的方程;

(II)设A、B是轨迹上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点,且与直线相切.

(1) 求动圆的圆心轨迹的方程;

(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)已知动圆过定点,且与直线相切.

(1) 求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点,且与直线相切.

(1) 求动圆的圆心轨迹的方程;

(2) 是否存在直线,使过点,并与轨迹交于两点,且满足

?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三第二次阶段性考试数学试卷(解析版) 题型:解答题

(本小题满分15分) 已知动圆过定点,且与直线相切,椭圆 的对称轴为坐标轴,一个焦点是,点在椭圆上.

(Ⅰ)求动圆圆心的轨迹的方程及其椭圆的方程;

(Ⅱ)若动直线与轨迹处的切线平行,且直线与椭圆交于两点,问:是否存在着这样的直线使得的面积等于?如果存在,请求出直线的方程;如果不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案