精英家教网 > 高中数学 > 题目详情

如图,三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.

(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明结论;
(3)若AB=2,求三棱锥B﹣CED的体积.

(1)根据线面垂直的判定定理来加以证明,关键是对于DE⊥PC的证明的运用。
(2)点Q是线段PA上任一点都有BD⊥DQ
(3)

解析试题分析:解:
(1)证明:由等腰三角形PBC,得BE⊥PC,又DE垂直平分PC,
∴DE⊥PC,且DE∩BE=E, ∴PC⊥平面BDE;   4分
(2)由(Ⅰ)PC⊥平面BDE,BD?平面BDE,∴PC⊥BD 
同理,∵PA⊥底面ABC,∴PA⊥BD,    6分
又PA∩PC=P,  ∴BD⊥面APC,DQ?面APC,  ∴BD⊥DQ.
所以点Q是线段PA上任一点都有BD⊥DQ    8分
(3)∵PA=AB=2,∴, ∵AB⊥BC,
∴S△ABC==2.AC=2
∴CD==,   9分
即S△DCB=S△ABC,又E是PC的中点
∴V B﹣CED=S△ABC•PA=.    12分
考点:几何体的体积,以及线面垂直
点评:解决的关键是熟练的运用空间中线面的垂直以及线线的垂直的判定定理和性质定理来证明,并利用体积公式求解,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,直棱柱中,分别是的中点,.

⑴证明:;
⑵求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:三棱柱中,,,侧棱底面的中点,边上的动点。

(1)若中点,求证:平面
(2)若,求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,分别是的中点.

(1)求证: 底面
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P-ABCD的三视图和直观图如下:

(1)求四棱锥P-ABCD的体积;
(2) 若E是侧棱PC上的动点,是否不论点E在何位置,都有BD⊥AE?证明你的结论.
(3) 若F是侧棱PA上的动点,证明:不论点F在何位置,都不可能有BF⊥平面PAD。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.

(Ⅰ)求此几何体的体积;
(Ⅱ)求异面直线所成角的余弦值;
(Ⅲ)探究在上是否存在点Q,使得,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知圆锥的轴截面ABC是边长为的正三角形,O是底面圆心.

(1)求圆锥的表面积;
(2)经过圆锥的高的中点作平行于圆锥底面的截面,求截得的圆台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知平面,且是垂足,

证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱中,底面是直角梯形,

(1)求证:是二面角的平面角;
(2)在上是否存一点,使得与平面与平面都平行?证明你的结论.

查看答案和解析>>

同步练习册答案