精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的前n项和为Sn=n(2n+1),则a10=39.

分析 利用a10=S10-S9直接计算即可.

解答 解:∵Sn=n(2n+1),
∴a10=S10-S9
=10×21-9×19
=210-171
=39,
故答案为:39.

点评 本题考查求数列某项的值,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(1)把5本不同的书分给3名同学,每人一本,有多少种不同的分法?
(2)把5本相同的书分给3名同学,每人一本,有多少种不同的分法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+x-ln(1+x)
(I)讨论函数f(x)的单调性;
(Ⅱ)若关于x的方程f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(Ⅲ)证明:对任意的正整数n,不等式2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.正方体ABCD-A1B1C1D1的棱长为1,M是棱AB的中点,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与动点P到点M的距离的平方差为1,则动点P的轨迹是(  )
A.B.抛物线C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC,角A,B,C所对的边分别为a,b,c,则以下为钝角三角形的是(  )
A.a=3,b=3,c=4B.a=4,b=5,c=6C.a=4,b=6,c=7D.a=3,b=3,c=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin(2x+$\frac{π}{3}$)+1;
(1)求函数f(x)的单调递增区间;
(2)若存在区间[a,b](a,b∈R且a<b),使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知X~N(0,σ2),且P(-2≤X≤0)=0.4,则P(X>2)=0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={0,1},则满足X⊆A的非空集合X的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)求值:${(\frac{1}{81})}^{-\frac{1}{4}}$+${(\sqrt{2}-1)}^{0}$+log89×log316;
(2)已知a+a-1=6,求a2+a-2和${a}^{\frac{1}{2}}$+${a}^{-\frac{1}{2}}$的值.

查看答案和解析>>

同步练习册答案