精英家教网 > 高中数学 > 题目详情
17.计算:lg0.01+ln$\sqrt{e}$+lg100.

分析 根据对数的运算性质化简、求值即可.

解答 解:lg0.01+ln$\sqrt{e}$+lg100
=lg10-2+ln${e}^{\frac{1}{2}}$+lg102
=-2+$\frac{1}{2}$+2=$\frac{1}{2}$.

点评 本题考查对数的运算性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知$a={log_{\frac{1}{5}}}\frac{1}{3},b={log_5}\frac{1}{3},c={(\frac{1}{5})^{\frac{1}{2}}}$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的顶点B(-1,-3),AB边上的高CE所在直线的方程为x-3y-1=0,BC边上中线AD所在直线的方程为8x+9y-3=0.求:
(1)点A的坐标;          
(2)直线AC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦距为10,点P(2,1)在它的一条渐近线上.
(1)求双曲线的标准方程;
(2)求以双曲线的右准线为准线的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在△ABC中,若AB,BC在平面α内,试判断AC是否在平面α内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知[1+log(y+1)($\frac{sinx}{1+sinx}$)]•[log(4+sinx)(y+1)]=1.
(1)试将y表示为x的函数y=f(x),并求出定义域和值域;
(2)是否存在实数m,使得函数g(x)=mf(x)-$\sqrt{f(x)}$+1有零点?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.讨论函数f(x)=|x+1|+|x-1|-a的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,若AB=5,AC=12,|$\overrightarrow{AB}+\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,则$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$的值为$\frac{25}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{{\begin{array}{l}{1\;\;\;\;\;\;x≥a}\\{0\;\;\;\;\;\;x<a}\end{array}}$,函数g(x)=x2-x+1,则函数h(x)=g(x)-f(x)有两个零点的充要条件为(  )
A.a≤0B.a≥0C.a≤1D.a≥1

查看答案和解析>>

同步练习册答案