精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知椭圆C的焦点在y轴上,且离心率为.过点M(0,3)的直线l与椭圆C相交于两点AB.(1)求椭圆C的方程;(2)设P为椭圆上一点,且满足O为坐标原点),当||<时,求实数λ的取值范围.

(Ⅰ)   (Ⅱ)  (-2,)∪(,2)


解析:

(1)由题知a2=mb2=1,∴ c2=m-1∴ ,解得m=4.

∴ 椭圆的方程为.……………4分

(2)当l的斜率不存在时,,不符合条件. ………5分

l的斜率为k,则l的方程为y=kx+3.设A(x1y1),B(x2y2),P(x0y0),

联立l和椭圆的方程:  消去y,整理得(4+k2)x2+6kx+5=0,

∴ Δ=(6k)2-4×(4+k2)×5=16k2-80>0,解得k2>5.且

=

由已知有,整理得13k4-88k2-128<0,解得

∴ 5<k2<8.………9分∵ ,即(x1y2)+(x2y2)= λ(x0y0),

x1+x2=λx0y1+y2=λy0,当λ=0时,x1+x2=

显然,上述方程无解.当λ≠0时,=

P(x0y0)在椭圆上,∴

化简得.由 5<k2<8,可得3<2<4,∴ λ∈(-2,-)∪(,2). 即λ的取值范围为(-2,)∪(,2).…12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题

(本题满分12分)已知△的三个内角所对的边分别为.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题

(本题满分12分)

已知椭圆的长轴长是短轴长的倍,是它的左,右焦点.

(1)若,且,求的坐标;

(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线是切点),且使,求动点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量

(1)求椭圆的离心率

(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

 

查看答案和解析>>

同步练习册答案