精英家教网 > 高中数学 > 题目详情
已知函数若关于x的方程f(x)+2x-k=0有且只有两个不同的实根,则实数k的取值范围为( )
A.(-1,2]
B.(-∞,1]∪(2,+∞)
C.(0,1]
D.[1,+∞)
【答案】分析:作出函数f(x)的图象,根据方程构造函数,将关于x的方程f(x)+2x-k=0有且只有两个不同的实根,转化为图象的交点个数问题,即可求得结论.
解答:解:作出函数f(x)的图象如图,

与y轴的交点分别为(0.-1),(0,2)
由f(x)+2x-k=0可得f(x)=-2x+k
构造函数g(x)=-2x+k
由图象可知,关于x的方程f(x)+2x-k=0有且只有两个不同的实根时,实数k的取值范围为(-1,2]
故选A.
点评:本题考查函数的零点与方程根的关系,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则?=
π
6
5
6
π

②已知O、A、B、C是平面内不同的四点,且
OA
OB
OC
,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足
a
2
n+1
a
2
n
=p
(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为n=
1
12
(4k+8)

(k∈N*).
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省六安一中高三(下)第七次月考数学试卷(理科)(解析版) 题型:填空题

给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则
②已知O、A、B、C是平面内不同的四点,且,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为
(k∈N*).
其中正确命题的序号是   

查看答案和解析>>

同步练习册答案