17£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¹ýÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF×÷Ö±Ïß$x+y-\sqrt{2}=0$½»MÓÚA£¬BÁ½µã£¬PΪABµÄÖе㣬ÇÒOPµÄбÂÊΪ$\frac{1}{2}$£®
£¨1£©ÇóMµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßx-my+1=0½»ÍÖÔ²MÓÚC£¬DÁ½µã£¬Åжϵã$G£¨-\frac{9}{4}£¬0£©$ÓëÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²µÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x0£¬y0£©£®x0=$\frac{{x}_{1}+{x}_{2}}{2}$£¬${y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}$£¬$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-1£®½«A¡¢B´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}$=1£¬$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1£¬Ïà¼õ¿ÉµÃ£ºa2=2b2£¬ÓÖc=$\sqrt{2}$£¬a2=b2+c2£¬½âµÃ¼´¿ÉµÃ³ö£®
£¨2£©ÉèµãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôò$\overrightarrow{GC}$=$£¨{x}_{1}+\frac{9}{4}£¬{y}_{1}£©$£¬$\overrightarrow{GD}$=$£¨{x}_{2}+\frac{9}{4}£¬{y}_{2}£©$£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨m2+2£©y2-2my-3=0£¬ÀûÓøùÓëϵÊýµÄ¹²Ïß¼°ÆäÊýÁ¿»ýÔËËãÐÔÖʼ´¿ÉÅжϳö½áÂÛ£®

½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x0£¬y0£©£®
Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$£¬${y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}$£¬$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-1£®
½«A¡¢B´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}$=1£¬$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1£¬
Ïà¼õ¿ÉµÃ£º£¨1£©-£¨2£©µÃµ½$-\frac{{b}^{2}}{{a}^{2}}•\frac{{x}_{0}}{{y}_{0}}$=-1£¬
ÓÖOPµÄбÂÊΪ$\frac{1}{2}$=$\frac{{y}_{0}}{{x}_{0}}$£¬
¡àa2=2b2£¬ÓÖc=$\sqrt{2}$£¬a2=b2+c2£¬
½âµÃa=2£¬b2=2£®
µÃµ½±ê×¼·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{2}=1$£®
£¨2£©ÉèµãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôò$\overrightarrow{GC}$=$£¨{x}_{1}+\frac{9}{4}£¬{y}_{1}£©$£¬$\overrightarrow{GD}$=$£¨{x}_{2}+\frac{9}{4}£¬{y}_{2}£©$£®
ÓÉ$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬»¯Îª£¨m2+2£©y2-2my-3=0£¬
¡ày1+y2=$\frac{2m}{{m}^{2}+2}$£¬y1y2=$\frac{-3}{{m}^{2}+2}$£¬
´Ó¶ø$\overrightarrow{GC}•\overrightarrow{GD}$=$£¨{x}_{1}+\frac{9}{4}£©£¨{x}_{2}+\frac{9}{4}£©$+y1y2=$£¨m{y}_{1}+\frac{5}{4}£©$$£¨m{y}_{2}+\frac{5}{4}£©$+y1y2=£¨m2+1£©y1y2+$\frac{5}{4}m£¨{y}_{1}+{y}_{2}£©$+$\frac{25}{16}$=$\frac{-3£¨{m}^{2}+1£©}{{m}^{2}+2}$+$\frac{5{m}^{2}}{2£¨{m}^{2}+2£©}$+$\frac{25}{16}$=$\frac{17{m}^{2}+2}{16£¨{m}^{2}+2£©}$£¾0£®
ÓÖ$\overrightarrow{GC}$£¬$\overrightarrow{GD}$²»¹²Ïߣ®
¡à¡ÏAGBΪÈñ½Ç£®
¹ÊµãGÔÚÒÔABΪֱ¾¶µÄÔ²Í⣮

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´ÎµÄ¸ùÓëϵÊýµÄ¹²Ïß¡¢ÊýÁ¿»ýÔËËãÐÔÖÊ¡¢µãÓëÔ²µÄλÖùØϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁгÌÐòÓï¾ä²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®INPUT¡°MATH=¡±£»aB£®PRINT¡°MATH=¡±£»a+b+c
C£®y=b-cD£®a+b=c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®$y=sin£¨{2x+\frac{5¦Ð}{2}}£©$µÄͼÏóµÄÒ»Ìõ¶Ô³ÆÖáÊÇ£¨¡¡¡¡£©
A£®$-\frac{¦Ð}{4}$B£®$-\frac{¦Ð}{2}$C£®$\frac{¦Ð}{8}$D£®$\frac{5¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=x2+2x-aÓëg£¨x£©=2x+2lnx£¨$\frac{1}{e}$¡Üx¡Üe£©µÄͼÏóÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬$\frac{1}{{e}^{2}}$+2]B£®[$\frac{1}{{e}^{2}}$+2£¬e2-2]C£®£¨1£¬e2-2]D£®[e2-2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®£¨x-1£©£¨2x-$\frac{1}{x}$£©5µÄ¶þÏîÕ¹¿ªÊ½Öг£ÊýÏîΪ-40£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑ֪˫ÇúÏßC£º${x^2}-\frac{y^2}{3}=1$µÄÓÒ½¹µãΪF£¬PÊÇË«ÇúÏßCµÄ×óÖ§ÉÏÒ»µã£¬M£¨0£¬2£©£¬Ôò¡÷PFMÖܳ¤×îСֵΪ$2+4\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®É躯Êýf£¨x£©=alnx-bx2£¨x£¾0£©£¬Èôº¯Êýy=f£¨x£©ÔÚx=1´¦ÓëÖ±Ïßy=-1ÏàÇУ®
£¨¢ñ£© ÇóʵÊýa£¬bµÄÖµ£»
£¨¢ò£© Çóº¯Êýy=f£¨x£©ÔÚ$[{\frac{1}{e}£¬e}]$ÉϵÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏòÃæ»ýΪSµÄƽÐÐËıßÐÎABCDÖÐÈÎͶһµãM£¬Ôò¡÷MCDµÄÃæ»ýСÓÚ$\frac{S}{3}$µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{3}{5}$C£®$\frac{2}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªf£¨x£©=loga$\frac{2+x}{2-x}$£¨a£¾0ÇÒa¡Ù1£©
£¨1£©Çóf£¨x£©µÄ¶¨ÒåÓò£»
£¨2£©ÅжÏf£¨x£©µÄÆæżÐÔ£»
£¨3£©µ± a£¾1ʱ£¬Çóʹf£¨x£©£¾0³ÉÁ¢µÄxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸