·ÖÎö £¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x0£¬y0£©£®x0=$\frac{{x}_{1}+{x}_{2}}{2}$£¬${y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}$£¬$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-1£®½«A¡¢B´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}$=1£¬$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1£¬Ïà¼õ¿ÉµÃ£ºa2=2b2£¬ÓÖc=$\sqrt{2}$£¬a2=b2+c2£¬½âµÃ¼´¿ÉµÃ³ö£®
£¨2£©ÉèµãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôò$\overrightarrow{GC}$=$£¨{x}_{1}+\frac{9}{4}£¬{y}_{1}£©$£¬$\overrightarrow{GD}$=$£¨{x}_{2}+\frac{9}{4}£¬{y}_{2}£©$£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨m2+2£©y2-2my-3=0£¬ÀûÓøùÓëϵÊýµÄ¹²Ïß¼°ÆäÊýÁ¿»ýÔËËãÐÔÖʼ´¿ÉÅжϳö½áÂÛ£®
½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x0£¬y0£©£®
Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$£¬${y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}$£¬$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-1£®
½«A¡¢B´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}$=1£¬$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1£¬
Ïà¼õ¿ÉµÃ£º£¨1£©-£¨2£©µÃµ½$-\frac{{b}^{2}}{{a}^{2}}•\frac{{x}_{0}}{{y}_{0}}$=-1£¬
ÓÖOPµÄбÂÊΪ$\frac{1}{2}$=$\frac{{y}_{0}}{{x}_{0}}$£¬
¡àa2=2b2£¬ÓÖc=$\sqrt{2}$£¬a2=b2+c2£¬
½âµÃa=2£¬b2=2£®
µÃµ½±ê×¼·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{2}=1$£®
£¨2£©ÉèµãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôò$\overrightarrow{GC}$=$£¨{x}_{1}+\frac{9}{4}£¬{y}_{1}£©$£¬$\overrightarrow{GD}$=$£¨{x}_{2}+\frac{9}{4}£¬{y}_{2}£©$£®
ÓÉ$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬»¯Îª£¨m2+2£©y2-2my-3=0£¬
¡ày1+y2=$\frac{2m}{{m}^{2}+2}$£¬y1y2=$\frac{-3}{{m}^{2}+2}$£¬
´Ó¶ø$\overrightarrow{GC}•\overrightarrow{GD}$=$£¨{x}_{1}+\frac{9}{4}£©£¨{x}_{2}+\frac{9}{4}£©$+y1y2=$£¨m{y}_{1}+\frac{5}{4}£©$$£¨m{y}_{2}+\frac{5}{4}£©$+y1y2=£¨m2+1£©y1y2+$\frac{5}{4}m£¨{y}_{1}+{y}_{2}£©$+$\frac{25}{16}$=$\frac{-3£¨{m}^{2}+1£©}{{m}^{2}+2}$+$\frac{5{m}^{2}}{2£¨{m}^{2}+2£©}$+$\frac{25}{16}$=$\frac{17{m}^{2}+2}{16£¨{m}^{2}+2£©}$£¾0£®
ÓÖ$\overrightarrow{GC}$£¬$\overrightarrow{GD}$²»¹²Ïߣ®
¡à¡ÏAGBΪÈñ½Ç£®
¹ÊµãGÔÚÒÔABΪֱ¾¶µÄÔ²Í⣮
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´ÎµÄ¸ùÓëϵÊýµÄ¹²Ïß¡¢ÊýÁ¿»ýÔËËãÐÔÖÊ¡¢µãÓëÔ²µÄλÖùØϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | INPUT¡°MATH=¡±£»a | B£® | PRINT¡°MATH=¡±£»a+b+c | ||
C£® | y=b-c | D£® | a+b=c |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $-\frac{¦Ð}{4}$ | B£® | $-\frac{¦Ð}{2}$ | C£® | $\frac{¦Ð}{8}$ | D£® | $\frac{5¦Ð}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨1£¬$\frac{1}{{e}^{2}}$+2] | B£® | [$\frac{1}{{e}^{2}}$+2£¬e2-2] | C£® | £¨1£¬e2-2] | D£® | [e2-2£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{1}{3}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{3}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com